A 3.1-10.6 GHz Ultra-Wideband Low Noise Amplifier with Novel Input Matching Network

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Abstract

In this paper, a two-stage common source low noise amplifier (LNA) with novel input matching network is presented for ultra-wideband (UWB) applications. The proposed input matching network employing the active feedback and an inductive network is proposed to achieve the wideband matching, low noise figure and high flatness gain simultaneously. The proposed LNA has been designed and simulated in the RF-TSMC CMOS 0.18 μm technology by Advanced Design System (ADS). The simulation results exhibit a flat power gain (S21) of 15±1 dB with a noise figure (NF) lower than 3.5 dB and an input impedance matching less than –10 dB over 3.1 to 10.6 GHz bandwidth. It consumes 10 mW from 1 V supply voltage and occupies 0.85 mm2.

Keywords


[1] Y. Lo and J. Kiang, "Design of wideband LNAs using parallel-to-series resonant matching network between common-gate and common-source stages", IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 9, pp. 2285-2294, 2011.
[2] Q. Wan and C. Wang, "Design of 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current reuse technique", AEU - International Journal of Electronics and Communications, vol. 65, no. 12, pp. 1006-1011, 2011.
[3] الهام بهرامی، حسین شمسی، «تقویت­کننده لگاریتمی کم مصرف و کم­نویز برای کاربرد ضبط سیگنال­های زیست-پتانسیل»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 73-81، 1395.
[4] H. Nejati, T. Ragheb, A. Nieuwoudt and Y. Massoud, "Analytical modeling methodology for ultra wideband low noise amplifiers with generalized filter-based impedance matching", Analog Integrated Circuits and Signal Processing, vol. 51, no. 2, pp. 121-127, 2007.
[5] C. T. Fu, C.N. Kuo and S. Taylor, "Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 795-806, 2010.
[6] S. Asgaran, M. Deen and C. Chen, "Design of the input matching network of RF CMOS LNAs for low-power operation", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 3, pp. 544-554, 2007.
 [7] پرویز امیری، محمود صیفوری، بابک آفرین، آوا هدایتی پور، «طراحی پیش تقویت­کننده RGC کم‏نویز مدار مجتمع CMOS با پهنای باند GHz 20 و بهره dBΩ 60 »، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 15-23، 1395.
[8] M. Khurram and S. M. R. Hasan, "A 3–5 GHz current-reuse gm-boosted CG-LNA for ultra wideband in 130 nm CMOS", in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 400-409, 2012.
[9] Y. S. Lin and et al., "Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network", in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 287-296, 2010.
[10] F. Chen, W. Zhang, W. Rhee, J. Kim, D. Kim and Z. Wang, "A 3.8-mW 3.5–4-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters", in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3350-3359, 2013.
[11] M. Battista, J. Gaubert, M. Egels, S. Bourdel and H. Barthelemy, "6–10 GHz ultra-wideband CMOS LNA", Electronics Letters, vol. 44, no. 5, pp. 343-345, 2008.
[12] D. Cassan and J. Long, "A 1-V transformer-feedback low-noise amplifier for 5 GHz wireless LNA in 0.18-μm CMOS", IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427-435, 2003.
[13] X. Guan, C. Huynh and C. Nguyen, "Design of a 0.18-μm CMOS resistive shunt feedback low-noise amplifier for 3.1–10.6-GHz UWB receivers", 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, USA, 2011, pp. 1-2.
[14] J. Borremans, P. Wambacq, C. Soens, Y. Rolain and M. Kuijk, "Low-area active-feedback low-noise amplifier design in scaled digital CMOS", in IEEE Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2422-2433, 2008.
[15] A. Bevilacqua and A. Niknejad, "An ultra-wideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers", IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, 2004.
[16] H. K. Chen, Y. S. Lin and S. S. Lu, "Analysis and design of a 1.6–28-GHz compact wideband LNA in 90-nm CMOS using a P-match input network", in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 8, pp. 2092-2104, 2010.
[17] P. Y. Chang, S. H. Su, S. S. H. Hsu, W. H. Cho and J. D. Jin, "An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS", in IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197-199, 2012.
[18] J.-Y. Lee, W.-J. Lin, M.-P. Houng and L.-S. Chen, "A compact wideband matching 0.18 m CMOS UWB low noise amplifier using active feed-back technique", Progress In Electromagnetics Research C, Vol. 16, pp. 161-169, 2010.
[19] L. Ma, Z. Wang, J. Xu, and X. Chen, " A 45-GHz CMOS low-power LNA using active feedback", PIERS Proceedings, Prague, Czech Republic, 2015, pp. 6-9.
[20] C. Feng, Z. Lu, W. Lim, W. Sui and X. Yu, "3–10 GHz self-biased resistive-feedback LNA with inductive source degeneration", Electronics Letters, vol. 49, no. 6, pp. 387-388, 2013.
[21] H. Chen, D. Chang, Y. Juang and S. Lu, "A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques", IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 616-618, 2007.
[22] J. Borremans, P. Wambacq and D. Linten, "An ESD-protected DC-to-6GHz 9.7 mW LNA in 90nm digital CMOS", 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2007, pp. 422-424.
[23] Y. Lu, K. Yeo, A. Cabuk, J. Ma, M. Do and Z. Lu, "A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 8, pp. 1683-1692, 2006.
[24] S. Arshad, R. Ramzan, K. Muhammad and Q. Wahab, "A sub-10mW, noise cancelling, wideband LNA for UWB applications", AEU - International Journal of Electronics and Communications, vol. 69, no. 1, pp. 109-118, 2015.
[25] A. Galal, R. Pokharel, H. Kanaya and K. Yoshida, "High linearity technique for ultra-wideband low noise amplifier in 0.18μm CMOS technology", AEU - International Journal of Electronics and Communications, vol. 66, no. 1, pp. 12-17, 2012.
[26] Y. S. Lin, C. C. Wang, G. L. Lee and C. C. Chen, "High-performance wideband low-noise amplifier using enhanced P-match input network", in IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, 2014.
[27] C. Wu, Y. Lin and C. Wang, "A 3.1-10.6-GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward body bias and forward combining techniques", Microwave and Optical Technology Letters, vol. 55, no. 10, pp. 2296-2302, 2013.
[28] Z. Zhang, A. Dinh, L. Chen, and H. Wang, "Wide range linearity improvement technique for linear wideband LNA",  IEICE Electronics Express, vol. 14, no. 4, pp. 1-10, 2017.
[29] A. Sahafi, J. Sobhi, and Z. D. Koozehkanani, "Linearity improvement of gm-boosted common gate LNA: Analysis to design", Microelectronics Journal, vol. 56, pp. 156-162, 2016.
[30] Y. Yu, K. Kang, Y. Fan, C. Zhao, H. Liu, Y. Wu, Y. Ban and W. Yin, "Analysis and design of inductorless wideband low-noise amplifier with noise cancellation technique", in IEEE Access, vol. 5, pp. 9389-9397, 2017.
[31] N. Li, W. Feng and X. Li, "A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network", in IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 383-385, 2017.