Line Sensitivity Enhancement of Low Power Voltage Reference Circuits Using a Novel Two Stage Structure in Subthreshold

Authors

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

In this paper, a new method for improving line sensitivity of a low voltage and low power voltage reference is presented. In this new proposed topology, a bandgap voltage reference is used in the first stage and significantly improved line sensitivity through feeding supply voltage of a thermal voltage reference in the second stage. In comparision to similar counterparts, this structure has better line sensitivity and in the order of   0.079 %/V. Due to the use of subthreshold regime MOSFETs, optimized design and also low supply voltage of 250 mV, the obtained power dissipation is about 32.6 pW which is categorized in low power voltage references. The proposed circuit is simulated in a 0.18um CMOS process and for evaluation in near to reality conditions, effects of process and mismatch on the circuit’s performance are also investigated in this work.

Keywords


[1] B.Razavi, Design of Analog CMOS Integrated Circuits. New York McGraw-Hill Education 2017.
[2] T. C. Carusone, A. David, D. A. J. Tony Chan Carusone, W. M. Kenneth, B. E. B. E. Bürdek, P. R. H. Gray, et al., "Analog integrated circuit design," in WORKSHOP on VLSI Signal Processing (1986: Los Angeles, US), 2012.
[3] نظری و یاوند حسنی، «طراحی یک تقویت‌کننده کم‌نویز کسکود ولتاژ پایین با خطینگی بالا به کمک روش تزویج مغناطیسی در باند GHz45»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 760-751، تابستان 1396.
[4] پروین، محمدپور و امیدوار، «ارائه روشی مبتنی بر پوشش سراسری و تخمین اتفاق آرا برای بهبود کارایی در شبکه حسگر بی‌سیم»، مجله مهندسی برق دانشگاه تبریز، 1395.
[5] A. Wang and A. Chandrakasan, "A 180-mV subthreshold FFT processor using a minimum energy design methodology," IEEE Journal of solid-state circuits, vol. 40, pp. 310-319, 2005.
[6] S.-C. Luo and L.-Y. Chiou, "A sub-200-mV voltage-scalable SRAM with tolerance of access failure by self-activated bitline sensing," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, pp. 440-445, 2010.
[7] I. Filanovsky and A. Allam, "Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, pp. 876-884, 2001.
[8] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, et al., "A CMOS bandgap reference circuit with sub-1-V operation," IEEE Journal of Solid-State Circuits, vol. 34, pp. 670-674, 1999.
[9] Y. Yang, D. M. Binkley, L. Li, C. Gu, and C. Li, "All-CMOS subbandgap reference circuit operating at low supply voltage," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, pp. 893-896, 2011.
[10] B.-D. Yang, "250-mV supply subthreshold CMOS voltage reference using a low-voltage comparator and a charge-pump circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, pp. 850-854, 2014.
[11] G. De Vita and G. Iannaccone, "A Sub-1-V, 10 ppm/˚C, Nanopower Voltage Reference Generator," IEEE Journal of Solid-State Circuits, vol. 42, pp. 1536-1542, 2007.
[12] L. Magnelli, F. Crupi, P. Corsonello, C. Pace, and G. Iannaccone, "A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference," IEEE Journal of Solid-State Circuits, vol. 46, pp. 465-474, 2011.
[13] D. Albano, F. Crupi, F. Cucchi, and G. Iannaccone, "A Sub-kT/q Voltage Reference Operating at 150 mV," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, pp. 1547-1551, 2015.
[14] H. Luo, Y. Han, R. C. Cheung, G. Liang, and D. Zhu, "Subthreshold CMOS voltage reference circuit with body bias compensation for process variation," IET circuits, devices & systems, vol. 6, pp. 198-203, 2012.
[15] P. Kinget, C. Vezyrtzis, E. Chiang, B. Hung, and T. Li, "Voltage references for ultra-low supply voltages," IEEE Custom Integrated Circuits Conference, pp. 715-720, 2008.
[16] A. Boni, "Op-amps and startup circuits for CMOS bandgap references with near 1-V supply," IEEE Journal of Solid-State Circuits, vol. 37, pp. 1339-1343, 2002.
[17] A.-J. Annema, P. Veldhorst, G. Doornbos, and B. Nauta, "A sub-1V bandgap voltage reference in 32nm FinFET technology," IEEE Solid-State Circuits Conference-Digest of Technical Papers, pp. 332-333, 2009.
[18] Y. Wang, Z. Zhu, J. Yao, and Y. Yang, "A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 621-625, 2015.