Low-Complexity Constrained Model Predictive Tracking Control: Parametric Programming Approach

Abstract

Abstract: In this paper, the constrained output tracking problem for linear systems with fast dynamics is addressed. It is assumed that the system is subject to input/state constraints and the reference signal is piecewise constant. Based upon the closed-loop control behavior, a simple controller is designed and it is shown that the proposed architecture guarantees the feasibility and asymptotic stability of the closed-loop system. Adapting and formulating the proposed controller as a model predictive control problem, an explicit optimal solution is obtained for the proposed controller. It is shown that the proposed approach can be effectively applied when the reference signal takes only some finite predefined values. However, non-predefined references are also handled and it is guaranteed to be feasible under some mild assumptions.

Keywords


[1] Y. Fujimoto, and A. Kawamura, “Robust servo-system based on two-degree-of-freedom control with sliding mode,” IEEE Transactions on Industrial Electronics, vol. 42, no. 3, pp. 272-280, 1995.
[2] S. Weerasooriya, and D. T. Phan, “Discrete-time LQG/LTR design and modeling of a disk drive actuator tracking servo system,” IEEE Transactions on Industrial Electronics, vol. 42, no. 3, pp. 240-247, 1995.
[3] X. Jiao, J. Zhang, and T. Shen, “An adaptive servo control strategy for automotive electronic throttle and experimental validation,” IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6275-6284, 2014.
[4] N. P. Ananthamoorthy, and K. Baskaran, “Speed and torque control of permanent magnet synchronous motor using hybrid fuzzy proportional plus integral controller,” Journal of Vibration and Control, vol. 21, no. 3, pp. 563-579, 2015.
[5] P. Guillemin, “Fuzzy logic applied to motor control,” IEEE Transactions on Industrial Applications, vol. 32, no. 1, pp. 51-56, 1996.
[6] M. Msaad, and G. Sanche, “Multivariable generalized predictive adaptive control with a suitable tracking capability,” Journal of Process Control, vol. 4, no. 1, pp. 45-52, 1994.
[7] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking piecewise constant references for constrained linear systems,” Automatica, vol. 44, no. 9, pp. 2382-2387, 2008.
[8] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking with optimal closed-loop performance,” Automatica, vol. 45, no. 8, pp. 1975-1978, 2009.
[9] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free model predictive control,” Automatica, vol. 45, no. 10, pp. 2214-222, 2009.
[10] Y. H. Chen, “Constraint-following servo control design for mechanical systems,” Journal of Vibration and Control, vol. 15, no. 3, pp. 369-389, 2009.
[11] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of constrained linear systems via predictive reference management.” IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 340-349, 1997.
[12] F. Blanchini, and S. Miani, “Any domain of attraction for a linear constrained system is a tracking domain of attraction,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 971-994, 2000.
[13] فاطمه منفرد، محمدحسین شفیعی و طاهره بینازاده، «طراحی کنترل‌کننده ردیاب مقاوم برای یک روبات متحرک غیرهولونومیک دارای لغزش جانبی با روش‌های بازطراحی لیاپانوفی و ∞H غیرخطی،» مجله مهندسی برق دانشگاه تبریز، دوره 45 شماره 4، صفحه 202-191، 1394.
[14] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: stability and optimality,” Automatica, vol. 36, no. 6, pp. 789-814, 2000.
[15] D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219-234, 2005.
[16] D. Limon, I. Alvarado, T. Alamo, M. Fiacchini, and E. F. Camacho, “Robust tube-based MPC for tracking of constrained linear systems with additive disturbances,” Journal of Process Control, vol. 20, no. 3, 248-260, 2010.
[17] G. Betti, M. Farina, and R. Scattolini, “A robust MPC algorithm for offset-free tracking of constant reference signals,” IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2394-2400, 2013.
[18] N. M. Zeilinger, D. M. Raimondo, A. Domahidi, M. Morari, and C. N. Jones, “On real-time robust model predictive control,” Automatica, vol. 50, no. 3, pp. 683-694, 2014.
[19] M. A. Mohammadkhani, F. Bayat, and A. A. Jalali, “Design of explicit model predictive control for constrained linear systems with disturbances,” International Journal of Control, Automation and Systems, vol. 12, no. 2, pp. 8-16, 2014.
[20] فاطمه پیروزمند، نعمت­اله قهرمانی و محمدرضا عاروان، «طراحی کنترل­کننده پیش­بین مقاوم با استفاده از نامساوی­های ماتریسی خطی برای سیستم کنترل وضعیت ماهواره،» مجله مهندسی برق دانشگاه تبریز، دوره 44 ، شماره 4 ، صفحه 21-9، زمستان 1393.
[21] Y. Wang, and S. Boyd, “Fast model predictive control using online optimization,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 267-278, 2010.
[22] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3-20, 2002.
[23] P. Tondel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-parametric quadratic programming and explicit MPC solutions,” Automatica, vol. 39, no. 3, pp. 489-497, 2003.
[24] F. Bayat, and T. A. Johansen, “Multi-resolution explicit model predictive control: delta model formulation and approximation,” IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2979-2984, 2013.
[25] T. A. Johansen, W. Jackson, R. Schrieber, and P. Tondel, “Hardware architecture design for explicit model predictive control,” American Control Conference, Minneapolis, 2006.
[26] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast stabilizing model predictive control via canonical piecewise affine approximations,” IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 2883-2897, 2011.
[27] F. Bayat, T. A. Johansen, and A. A. Jalali, “Flexible piecewise function evaluation methods based on truncated binary search trees and lattice representation in explicit MPC,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 632-640, 2012.
[28] E. G. Gilbert, and K. T. Tan, “Linear systems with state and control constraints: the theory and application of maximal output admissible sets,” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008-1020, 1991.
[29] J. Rossiter, B. Kouvaritakis, and J. Gossner, “Guaranteeing feasibility in constrained stable generalized predictive control,” IEE Control Theory & Applications, vol. 143, no. 3, pp. 463-469, 1996.
[30] M. Sznaier, and M. J. Damborg, “Suboptimal control of linear systems with state and control inequality constraints,” 26th IEEE Conf. on Decision and Control, Los Angeles, vol. 26, pp. 761-762, 1987.
F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to manage the time-storage complexity in a point