A 147dBΩ, High Dynamic Range Analog Front End for PPG Signal Acquisition with Fine and Coarse Steps Automatic Gain Control

Document Type : Original Article

Authors

Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

This paper deals with the design of a low power, high-gain, low noise and high-dynamic range receiver dedicated for photoplethysmography (PPG) signal sensing. A current measurement system utilizing a large DC cancelation block, implemented in 180nm CMOS technology. The shunt feedback trans-impedance amplifier (TIA) is designed to detect and sense low currents, producing a voltage output. It exhibits a noise floor of 39.7 pArms within the frequency range of 0.5-10Hz. The receiver gain is 147.6dBΩ. The receiver incorporates a fine and coarse steps gain control block (FaCGC) and a DC cancelation block capable of handling up to 100µA, thereby enabling a wide dynamic range. The proposed system exhibits characteristics such as low noise and wide dynamic range, rendering it well-suited for the precise measurement of ultra-low current. Consequently, this system holds significant potential for application in biosensor technology. The chip has a footprint of 0.121mm2 area and operates with a power consumption of 40.14 micro-watts, drawing power from supply voltages of ±0.9 volts. The post-layout simulation reveals a lower frequency limit below 1mHz, while the upper limits of its application band can be extended up to 100 Hz.

Keywords

Main Subjects


[1]    J. H.-S. Wang, M. H. Yeh, P. C.-P. Chao, T. Y. Tu, Y. H. Kao, and R. Pandey, “A fast digital chip implementing a real-time noise-resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor,” Microsyst. Technol., vol. 26, no. 11, pp. 3501–3516, Nov. 2020, doi: 10.1007/s00542-020-04946-y.
[2]    D. H. Nguyen, Y. T. Chen, T. Y. Tu, P. C. P. Chao, Y. W. Fang, and B. S. Lin, “A new blood flow volume sensor with embedded estimation of SpO2 to maximize its accuracy,” Microsyst. Technol., vol. 27, no. 6, pp. 2433–2445, 2021, doi: 10.1007/s00542-020-05149-1.
[3]    E. F. Pribadi, R. K. Pandey, and P. C.-P. Chao, “Design and implementation of a new light to digital converter for the PPG sensor,” Microsyst. Technol., vol. 27, no. 6, pp. 2461–2472, Jun. 2021, doi: 10.1007/s00542-020-05154-4.
[4]    R. K. Pandey and P. C.-P. Chao, “An adaptive analog front end for a flexible PPG sensor patch with self-determined motion related DC drift removal,” in Proceedings - IEEE International Symposium on Circuits and Systems, May 2021, vol. 2021-May, pp. 1–5, doi: 10.1109/ISCAS51556.2021.9401265.
[5]    A. K. Y. Wong, K. P. Pun, Y. T. Zhang, and K. N. Leung, “A low-power CMOS front-end for photoplethysmographic signal acquisition with robust DC photocurrent rejection,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 4, pp. 280–288, 2008, doi: 10.1109/TBCAS.2008.2003429.
[6]    Y. Shu et al., “26.1 A 4.5mm 2 Multimodal Biosensing SoC for PPG, ECG, BIOZ and GSR Acquisition in Consumer Wearable Devices,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), Feb. 2020, pp. 400–402, doi: 10.1109/ISSCC19947.2020.9063112.
[7]    G. Ferrari, F. Gozzini, A. Molari, and M. Sampietro, “Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1609–1616, May 2009, doi: 10.1109/JSSC.2009.2016998.
[8]    B. Lin, M. Atef, and G. Wang, “14.85 µW Analog Front-End for Photoplethysmography Acquisition with 142-dBΩ Gain and 64.2-pArms Noise,” Sensors, vol. 19, no. 3, p. 512, Jan. 2019, doi: 10.3390/s19030512.
[9]    A. K. Y. Wong, K. N. Leung, K.-P. Pun, and Y.-T. Zhang, “A 0.5-Hz High-Pass Cutoff Dual-Loop Transimpedance Amplifier for Wearable NIR Sensing Device,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 57, no. 7, pp. 531–535, Jul. 2010, doi: 10.1109/TCSII.2010.2048401.
[10]  A. Syed, K. Khan, A. Ahmad, M. S. Asad, and W. Saadeh, “A 1mW Vitals Monitoring System for Asthmatic Patients based on Photoplethysmography,” in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2019, pp. 1–4, doi: 10.1109/BIOCAS.2019.8918724.
[11]  H. Zheng, R. Ma, and Z. Zhu, “A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique,” Analog Integr. Circuits Signal Process., vol. 90, no. 1, pp. 217–226, Jan. 2017, doi: 10.1007/s10470-016-0867-1.
[12]  V. S. Rajan and B. Venkataramani, “Design of low power, programmable low-Gm OTAs and Gm-C filters for biomedical applications,” Analog Integr. Circuits Signal Process., vol. 107, no. 2, pp. 389–409, May 2021, doi: 10.1007/s10470-020-01748-0.
[13]  B. Lin, M. Atef, and G. Wang, “A low-power high-sensitivity analog front-end for PPG sensor,” in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2017, pp. 861–864, doi: 10.1109/EMBC.2017.8036960.
[14]  B. Lin, Z. Ma, M. Atef, L. Ying, and G. Wang, “Low-Power High-Sensitivity Photoplethysmography Sensor for Wearable Health Monitoring System,” IEEE Sens. J., vol. 21, no. 14, pp. 16141–16151, Jul. 2021, doi: 10.1109/JSEN.2021.3062189.
[15]  K. Puttananjegowda and S. Thomas, “A low-power low-noise multi-stage transimpedance amplifier for amperometric based blood glucose monitoring systems,” Analog Integr. Circuits Signal Process., vol. 102, no. 3, pp. 659–666, Mar. 2020, doi: 10.1007/s10470-020-01600-5.
[16]  S. Firouz, E. N. Aghdam, and R. Jafarnejad, “A Low Power, Low Noise, Single-Ended to Differential TIA for Ultrasound Imaging Probes,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 2, pp. 607–611, 2021, doi: 10.1109/TCSII.2020.3018223.
[17]  F. Centurelli, A. Fava, G. Scotti, and A. Trifiletti, “80 dB tuning range transimpedance amplifier exploiting the Switched-Resistor approach,” AEU - Int. J. Electron. Commun., vol. 149, p. 154196, May 2022, doi: 10.1016/j.aeue.2022.154196.
[18]  A. Atef, M. Atef, E. E. M. Khaled, and M. Abbas, “CMOS Transimpedance Amplifiers for Biomedical Applications: A Comparative Study,” IEEE Circuits Syst. Mag., vol. 20, no. 1, pp. 12–31, 2020, doi: 10.1109/MCAS.2019.2961724.
[19]  M. Atef and H. Zimmermann, Optoelectronic Circuits in Nanometer CMOS Technology, 1st ed., vol. 55. Springer, Cham, 2016.
[20]  K. Sharma, A. Pathania, R. Pandey, J. Madan, and R. Sharma, “MOS based pseudo-resistors exhibiting Tera Ohms of Incremental Resistance for biomedical applications: Analysis and proof of concept,” Integration, vol. 76, no. March 2020, pp. 25–39, Jan. 2021, doi: 10.1016/j.vlsi.2020.08.001.
[21]  A. Arnaud, R. Fiorelli, and C. Galup-Montoro, “Nanowatt, Sub-nS OTAs, With Sub-10-mV Input Offset, Using Series-Parallel Current Mirrors,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2009–2018, Sep. 2006, doi: 10.1109/JSSC.2006.880606.
[22]  A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation, vol. 101, no. 23, pp. 215–220, Jun. 2000, doi: 10.1161/01.CIR.101.23.e215.