[1] Y. Ota, R.G. Swartz, “Burst-mode compatible optical receiver with a large dynamic range”, J. Light. Technol., Vol. 8, pp. 1897–1903, 1990. [2] B. Moeneclaey, J. Verbrugghe, F. Blache, M. Goix, D. Lanteri, B. Duval, J. Bauwelinck, X. Yin, “A 40-Gb/s transimpedance amplifier for optical links”, IEEE Photonics Technol. Lett., Vol. 27, pp. 1375–1378, 2015. [3] B. Razavi, “Design of Integrated Circuit for Optical Comunications”, Second edition, John Wiley & Sons Inc, New Jersey, 2012. [4] M. Rakideh, Seifouri, P. Amiri, “A folded cascode-based broadband transimpedance amplifier for optical communication”, Microelectron. J,.Vol. 54, pp. 1–8, 2016. [5] S.M.R. Hasan, “Design of a low power 3.5-GHz broad-band CMOS”, IEEE Trans. Circuits Syst. I, Vol. 52, pp. 1061–1072, 2005. [6] S. Zohoori, T. Shafiei, M. Dolatshahi, “A 274µW, Inductorless, Active RGC-Based Transimpedance Amplifier Operating at 5Gbps”, 27th Iranian Conference on Electrical Engineering (ICEE2019), pp. 1-4, 2019. [7] R.Soltanisarvestani, S. Zohoori, A. soltanisarvestani, “A RGC-Based, Low-Power, CMOS Transimpedance Amplifier for 10Gb/s Optical Receivers”, International Journal of Electronics, Vol. 107, Issue. 3, 2020. [8] S. Zohoori, M. Dolatshahi, “A Low-power, CMOS Transimpedance Amplifier in 90-nm technology for 5-Gbps optical communication applications”, International Journal of circuit theory and applications, Vol. 46, issue. 8, pp. 1-14, 2018. [9] P. Amiri, M. Seifouri, B. Afarin, A. Hedayati Pour, “Design of RGC preamplifier with bandwidth 20GHz and transimpedance 60 dBΩ for telecommunication systems”, Tabriz, J. Electr. Eng., Vol. 46, pp. 15–23., 2016. [10] D. Chen, S. Yeh, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission”, IEEE Trans. Very Large Scale Integer. (VLSI) Syst., Vol. 21, pp. 1516–1525, 2013. [11] S. Zohoori, M. Dolatshahi, “A CMOS Low-Power Optical Front-End for 5Gbps Applications”, Fiber and Integrated Optics, Vol. 37, No. 1, pp. 37-56, 2018. [12] M. Seifoui, P. Amiri, I. Dadras, “ An Electronic Transimpedance Amplifier for Optical Communications Network Based on Active Voltage-Current Feedback”, TABRIZ Journal of electrical Engineering, Vol. 48, No. 2, pp. 737-744, 2018. (in Persian) [13] B. Analui, A. Hajimiri, “Bandwidth Expansion for transimpedance Amplifiers”, IEEE J. Solid-State Circuits, Vol. 39, pp. 1263–1270, 2004. [14] S. Zohoori, M. Dolatshahi, “An inductor-less, 10Gbps Trans-impedance Amplifier Operating at low supply-voltage”, 25th Iranian conference on electrical Engineering (ICEE2017), pp. 145-148, 2017. [15] S. Galal, B. Razavi, “40-Gb/s amplifier and esdprotection circuit in 0.18-μm CMOS technology”, IEEE J. Solid-State Circuits,Vol. 39, pp. 2389–2396, 2004. [16] J. Park, D. J. Allstot, “A matrix amplifier in0.18μm SOI CMOS”, IEEE Trans. Circuits Syst, Vol. 53, pp. 561–568, 2006. [17] L. Liu, J. Zou, N. Ma, Zh. Zhu, Y. Yang, “A CMOS Transimpedance Amplifier with high gain and wide dynamic range for optical fiber Sensing System”, Optik, Vol. 126, pp. 1389-1393, 2015. [18] K. Monfared, Y. Belghisazar, “Improved Low Voltage Low Power Recycling Folded Fully Differential Cascode Amplifier”, TABRIZ Journal of electrical Engineering, Vol. 48, No. 1, pp. 327-334, 2018. (in Persian) [19] B. Razavi, “Design of Analog CMOS Integrated Circuits”, MacGraw–Hill Series in Electrical and Computer Engineering, 2002. [20] M. H. Taghavi, A. Naji, L. Belotstotski and J.W. Hasllet, “On the use of multi-path inductorless TIA for Larger Transimpedance limit”, Analog Integrated Circuit and Signal Processing, Vol. 77, No. 2 , 2013. [21] W. Chen, Y. Cheng and D. Lin, “A 1.8v 10Gbps Fully Integrated CMOS Optical Receiver Analog Front End”, IEEE Journal of Solid State Circuits, Vol. 40 , pp. 3904-3907, 2007. [22] M. Rakideh, M. Seifouri, P. Amiri, “A folded cascode-based broadband transimpedance amplifier for optical communication”, Microelectronics Journals. Vol. 54, pp. 1–8, 2016. [23] D. Chen, S. Yeh, X. Shi, M.A. Do, C.C. Boon, W.M. Lim, “Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission,” IEEE Transactions on Very Large Scale Integeratiobn (VLSI) System, Vol. 21, pp. 1516–1525, 2013. [24] M. H. Taghavi, L. Belostotski, J.W. Haslett, P. Ahmadi, “10-Gb/s 0.13-μm CMOS inductor less modified-RGC transimpedance amplifier”, IEEE Transactions on Circuits and Systems, Vol. 62, pp. 1971–1980, 2015. [25] P. Andre, S. Jacobus, “Design of a high gain and power efficient optical receiver front-end in 0.13μm RF CMOS technology for 10Gbps applications”, Microw. Opt. Technol. Lett., Vol. 58, pp.1499–1504, 2016. [26] K. Honda, H. Katsurai, M. Nada, “A 56-Gb/s transimpedance amplifier in 0.13-μm SiGe BiCMOS for an optical receiver with −18.8dBm input sensitivity”, in: Proceeding of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2016. [27] X. Hui, F. Jun, L. Quan and L. Wei, “A 3.125Gb/s Inductor-less Amplifier for Optical Communication in 0.35µm CMOS, Journal of Semiconductors”, Chinese Institute of electronics, Vol. 32, No. 10, pp. 105003_1-105003_5, 2011. [28] M. Seifouri, P. Amiri, I. Dadras, “A transimpedance Amplifier for optical communication network based on active voltage-current feedback”, Microelectronics Journal, Vol. 67 , pp. 25-31, 2017. [29] Y. Chen, J. Li, Z. Zhang, H. Wang, Y. Zhang, “12-Channel, 480 Gbit/s optical receiver analogue front-end in 0.13μm BiCMOS technology”, Electronics Letter, Vol. 53, pp. 492–494, 2017. [30] R. Y. Chen, Z.Y. Yang, “CMOS transimpedance amplifier for gigabit-per-second optical wireless communications”, IEEE Transaction on Circuits and Systems II, Vol. 63, pp. 418–422, 2016. [31] S. Zohoori, M. Dolatshahi, M. Pourahmadi, M. Hajisafari, “An Inverter-Based, CMOS, Low power Optical Receiver Front-End”, Fiber and Integrated Optics, Vol. 38, Issue. 1, pp. 1-19, 2019.