A Step Forward in the Design of Nano-Scale Circuits using Machine Intelligence

Document Type : Original Article

Authors

1 Faculty of Electrical Engineering, Lorestan University, Khorramabad, Iran

2 Faculty of Electrical Engineering, Lorestan University, Khorramabad, Iran,

Abstract

: One of the promising ideas to improve over CMOS constrains in the nano-scales is Quantum Cellular Automata (QCA). So far, a variety of logic circuits are designed based on QCA where usually the majority and the inverter gates are the basic building blocks from which more complicated circuits are developed. In this paper, first we propose an approach to minimize the number of the majority and inverter gates in a given circuit with multiple inputs/outputs (MIMO). In our proposal, which is based on Cartesian Genetic Programming (CGP), a QCA circuit is coded as a series of integer numbers that constitutes a genotype for CGP. Applying CGP operators then, outputs the optimum phenotype including the number and the type of gates along with their interconnections. As for the verification of this approach, we apply it to 27 logic circuits and the results are reported, which show better solutions (in majority of cases) compared to the competing approaches. In addition to a fewer number of gates, our approach may provide a way to design QCA circuits with less power dissipation and/or less occupied areas. 

Keywords


[1]      C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, pp. 49–57, 1993.
[2]      C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc. IEEE, vol. 85, no. 4, pp. 541-557, April 1997.
[3]      W. Liu, S. Srivastava, L. Lu, M. O'Neill and E. E. Swartzlander, “Are QCA cryptographic circuits resistant to power analysis attack?,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1239-1251, November 2012.
[4]      P. Singh and R. Chandel, “Design and performance analysis of digital circuits using carbon nanotube transistors,” In Inventive Communication and Computational Technologies (ICICCT), 2017 International Conference on, pp. 166-171. IEEE, 2017.
[5]      A. Karimi and A. Rezai, “Improved device performance in CNTFET using genetic algorithm,” ECS Journal of Solid State Science and Technology, 6(1), pp.M9-M12, 2017.
[6]      A. Karimi and A. Rezai, “A design methodology to optimize the device performance in CNTFET,” ECS Journal of Solid State Science and Technology, 6(8), pp.M97-M102, 2017.
[7]      حامد نجفعلی زاده و علی اصغر اروجی، «طراحی ساختاری از ترانزیستور ماسفت دو گیتی با به کارگیری دو ماده اکسید هافنیم (HfO2) و سیلیسیم-ژرمانیوم (SiGe) در کانالی از جنس سیلیسیم (DM-DG)»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 299-304، 1396. 
[8]      مهسا مهراد و میثم زارعی، «ارائه ساختاری جدید از ترانزیستورهای اثر میدان در مقیاس نانو به منظور بالا بردن قابلیت اطمینان»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 3، پاییز 1397.  
[9]      W. Liu, L. Lu, M. O’Neill and E. E. Swartzlander, “A first step toward cost functions for quantum-dot cellular automata designs,” IEEE Transactions on Nanotechnology, vol. 13, no. 3, pp.476-487, May 2014.
[10]      R. Zhang, K. Walus, W. Wang and G. A. Jullien, “A method of majority logic reduction for quantum cellular automata,” IEEE Transactions on Nanotechnology, vol. 3, no. 4, pp. 443-450, December 2004.
[11]      Z. Huo, Q. Zhang, S. Haruehanroengra and W. Wang, “Logic optimization for majority gate-based nanoelectronic circuits,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1307–1310, 2006.
[12]      P. Wang, M. Y. Niamat, S. R. Vemuru, M. Alam and T. Killian, “Synthesis of majority/minority logic networks,” IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp.473-483, 2015.  
[13]      M. R. Bonyadi, S. M. R. Azghadi, N. M. Rad, K. Navi and E. Afjei, “Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm,” Proceedings of the IEEE International Conference on Electrical Engineering, pp. 1-5, April 2007.
[14]      M. Houshmand, S. H. Khayat and R. Rezaei, “Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits,” Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 584–588, November 2009.
[15]      R. Rezaee, M. Houshmand and M. Houshmand, “Multi-objective optimization of QCA circuits with multiple outputs using genetic programming,” Genet Program Evolvable Mach, pp. 95-118, 2013.
[16]      Z. Beiki, M. Soryani and S. Mirzakuchaki, “Cell number optimization for quantum cellular automata based on genetic algorithm", Proceedings of the 3rd International Conference on Electronic Computer Technology, pp. 370–373, April 2011.
[17]      M. A. Tehrani, K. Navi and A. Kia-kojoori, “Multi-output majority gate-based design optimization by using evolutionary algorithm,” Swarm and Evolutionary Computation, vol. 10, pp. 25-30, 2013.
[18]      M. H. Mahalat, M. Goswami, A. Mondal and B. Sen, “Synthesis and optimization of multi-objective multi-output QCA circuit using genetic algorithm,” arXiv preprint arXiv: 1705.04099, 2017.
[19]      G. Khademi, S. Soltani Fahraj, M. T. Moradgholi and M. Houshmand, “Logic optimization of QCA circuits using Ant colony optimization,” Proceedings of the 22rd Iranian Conference on Electrical Engineering, May 2014.
[20]      A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent and G. L. Snider, “Realization of a functional cell for quantum dot cellular automata,” Science, vol. 277, pp. 928-930, August 1997.
[21]      I. E. Arani and A. Rezai, “Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology,” Journal of Computational Electronics, vol. 17, no. 4, pp.1771-1779, 2018.
[22]      P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, 1994.
[23]      H. Rashidi, A. Rezai and S. Soltany, “High-performance multiplexer architecture for quantum-dot cellular automata,” Journal of Computational Electronics, vol. 15, no. 3, pp.968-981, 2016.
[24]      H. Cho and E. E. Swartzlander, “Adder and multiplier design in quantum-dot cellular automata,” IEEE Trans. Computers, vol. 58, No. 6, pp. 721–727, June 2009.
[25]      C. S. Lent, M. Liu and Y. Lu, “Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling,” Nanotechnology, vol. 17, pp. 4240-4251, 2006.
[26]      J. F. Miller, “An empirical study of the efficiency of learning Boolean functions using a Cartesian genetic programming approach,” Proc. Genetic and Evolutionary Computation Conference, pp. 1135–1142, 1999.
[27]      J. F. Miller and P. Thomson, “Cartesian genetic programming,” Proc. European Conference on Genetic Programming, vol. 1802, pp. 121–132, 2000.
[28]      J. F. Miller, Cartesian Genetic Programming, Springer, Berlin Heidelberg, 2011.
[29]      I. Rechenberg, Evolutionsstrategie-Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution, Ph.D. Dissertation, Technical University of Berlin, Germany, 1971.