Voltage Control of Smart Grid by an Online Hierarchical Distributed method

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Faculty of Shahid Sadoughi, Yazd Branch, Technical and Vocational University (TVU), Yazd, Iran

2 Department of Electrical Engineering, Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

3 Department of Electrical Engineering, Engineering Faculty, Lorestan University, Khorramabad, Iran

Abstract

In this paper, an online optimal coordinated solution for the voltage regulation of a distribution smart grids including an on-load tap changer (OLTC) and multiple distributed generators (DG) is presented. The proposed strategy sets reactive power points of distributed generators as well as tap position of the OLTC hierarchically. In the first stage, a distributed sub-gradient method in order to find the optimal reactive powers for the DGs is implemented to minimize the power losses subject to voltage limits. If the first stage could not regulate voltage profile inside acceptable limits, in the second stage tap position of the OLTC will change optimally. The proposed solution is verified by studying suddenly load change and DGs’ active power output. An IEEE 123-bus unbalanced test system is used for the verification of the proposed method. Fast response, responsibility to different suddenly changes in the operating condition, and reduction in the number of needed taps are the results of this study. Moreover, analogous steady state results in comparison with another centralized method i.e. interior point algorithm demonstrate the ability and efficiency of the proposed solution.

Keywords


[1]      مجید نیری‌پور، سعید حسنوند، و حسین فلاح‌زاده ابرقوئی، «برنامه‌ریزی توسعه ظرفیت با درنظرگرفتن قابلیت اطمینان سیستم به‌منظور تبدیل شبکه توزیع موجود به ریزشبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 774-761، 1396.
[2]      K. Khawaja, S. Khan, S.-J. Lee, Z. Haider, M. Kashif Rafique and C.-H. Kim, "A real-time optimal coordination scheme for the voltage regulation of a distribution network including an OLTC, capacitor banks, and multiple distributed energy resources," International Journal of Electrical Power & Energy Systems, vol. 94, pp. 1-14, 2018.
[3]      A. Vaccaro, H. Qamar and H. Qamar, "Local, global and decentralized fuzzy-based computing paradigms for coordinated voltage control of grid-connected photovoltaic systems," Soft Computing, pp. 1-10, 2017.
[4]      M. Brenna, E. De Berardinis, L. Delli Carpini, F. Foiadelli, P. Paulon, P. Petroni, G. Sapienza, G. Scrosati and D. Zaninelli, "Automatic distributed voltage control algorithm in smart grids applications," IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 877-885, 2013.
[5]      D. Ranamuka, A. P. Agalgaonkar and K. M. Muttaqi, "Online voltage control in distribution systems with multiple voltage regulating devices," IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 617-628, 2014.
[6]      A. Cagnano and E. D. Tuglie, "Centralized voltage control for distribution networks with embedded PV systems," Renewable Energy, vol. 76, pp. 173-185, 2015.
[7]      V. Calderaro, G. Conio, V. Galdi, G. Massa and A. Piccolo, "Optimal decentralized voltage control for distribution systems with inverter-based distributed generators," IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 230-241, 2014.
[8]      H. Fakham, A. Ahmidi, F. Colas and X. Guillaud, "Multi-agent system for distributed voltage regulation of wind generators connected to distribution network," in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, 2010.
[9]      M. Marzband, M. Ghadimi, A. Sumper and J. L. Domínguez-García, "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, vol. 128, p. 164–174, 2014.
[10]      K. E. Antoniadou-Plytaria, I. Kouveliotis - Lysikatos, P. Georgilakis and N. D. Hatziargyriou, "Distributed and Decentralized Voltage Control of Smart Distribution Networks: Models, Methods, and Future Research," IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2999-3008, 2017.
[11]      M. E. Elkhatib, R. E. Shatshat and M. M. A. Salama, "Decentralized reactive power control for advanced distribution automation systems," IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1482-1490, 2012.
[12]      A. Cagnano and E. De Tuglie, "A decentralized voltage controller involving PV generators based on Lyapunov theory," Renewable Energy, vol. 86, pp. 664-674, 2016.
[13]      M. Bahramipanah, R. Cherkaoui and M. Paolone, "Decentralized voltage control of clustered active distribution network by means of energy storage systems," Electric Power Systems Research, vol. 136, pp. 370-382, 2016.
[14]      M. Nayeripour, H. Fallahzadeh-Abarghouei, E. Waffenschmidt and S. Hasanvand, "Coordinated online voltage management of distributed generation using network partitioning," Electric Power Systems Research, vol. 141, pp. 202-209, 2016.
[15]      H. Fallahzadeh-Abarghouei, M. Nayeripour, E. Waffenschmidt and S. Hasanvand, "A new decentralized voltage control method of smart grid via distributed generations," in 2016 International Energy and Sustainability Conference (IESC), Cologne, Germany, 2016.
[16]      مجید نیری‌پور، حسین فلاح‌زاده ابرقوئی، و سعید حسنوند «مدیریت توزیع‌شده و سلسله‌مراتبی ولتاژ در شبکه هوشمند با مشارکت مولدهای پراکنده»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 343-329، 1396.
[17]      M. Marzband, N. Parhizi, M. Savaghebi and J. M. Guerrero, "Distributed Smart Decision-Making for a Multi-Microgrid System Based on a Hierarchical Interactive Architecture," IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 637-648, 2016.
[18]      P. Sulc, S. Backhaus and M. Chertkov, "Optimal distributed control of reactive power via the alternating direction method of multipliers," IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 968-977, 2014.
[19]      M. R. Kleinberg, K. Miu, N. Segal, H. Lehmann and T. R. Figura, "A partitioning method for distributed capacitor control of electric power distribution systems," IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 637-644, 2014.
[20]      T. Jen-Hao, "A direct approach for distribution system load flow solutions," IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, 2003.
[21]      A. Nedic and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, 2009.
[22]      Y. Yan, Y. Qian, S. Hamid and D. Tipper, "A survey on smart grid communication infrastructures: Motivations requirements and challenges," IEEE Communications Serveys & Tutorials, vol. 15, no. 1, pp. 5-20, 2013.
[23]      "Distribution test feeders," Distribution Test Feeder Working Group, 2010. [Online]. Available: http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
[24]      S. A. Arefifar, Y. Abdel-Rady I. Mohamed and T. H. M. EL-Fouly, "Comprehensive operational planning framework for self-healing control actions in smart distribution grids," IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4192-4200, 2013.
[25]      W. Zhang, W. Liu, X. Wang, L. Liu and F. Ferrese, "Distributed multiple agent system based online optimal reactive power control for smart grids," IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2421-2431, 2014.