A High Speed Phase Locked Loop, Using an Open-Loop Phase Detector and Carbon Nanotube Field Effect Transistors

Document Type : Original Article

Authors

Faculty of Engineering, University of Shahrekord, Shahrekord, Iran

Abstract

Speed, accuracy, and power consumption of electronic devices, are important parameters that should be considered in the design and manufacturing of these devices. In this paper, a new design of modified phase-locked loop, using Carbon Nanotube Field Effect Transistors, is proposed. Using a differential structure of the ring oscillator, the coupled noise of the power supply and the substrate is eliminated.  In addition, using active inductor in the oscillator delay cells will cause a marked increase in oscillation frequency. In the presented phase detector circuit, by using a new open loop structure, the detection speed increases significantly. This will remove the divider circuit on loop track. By removing the divider circuit, the noise of the loop will be reduced considrably. The designed circuit is implemented once in MOSFET technology using 0.18 micrometers process and once again in 32nm process of carbon nano-tube field effect transistors technology with 0.9 volt power supply. The center frequency in this process is 68.5 GHz. The value of power consumption is less than 150 nano-watts and the acquisition time is less than 10 picoseconds. 

Keywords


[1]      علی اصغر اروجی، زینب رمضانی و عاطفه رحیمی فر،«ترانزیستور اثر میدان فلز-نیمه هادی در تکنولوژی سیلیسیم روی عایق با استفاده از یک تکه اکسید اضافی در کانال برای کاربردهای توان و فرکانس بالا»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۶ ، شماره ۴، صفحه 1-6 ، 1395 .
[2]      مهسا مهراد و میثم زارعی، « ارائه ساختار نوین ترانزیستور اثر میدان سیلیسیم روی عایق دو‌گیتی با پنجره اکسید در درین گسترده‌شده به‌منظور کاربرد در تکنولوژی نانو» ، مجله مهندسی برق دانشگاه تبریز، جلد ۴7 ، شماره 2،صفحه 727-733 ، 1396 .
[3]      R. Martel, T. Schmidt, H.R. Shea, T. Hertel and P. Avouris, “Single and Multi-wall Carbon Nanotube Field-Effect Transistors”, Applied Physics Letters, vol. 73, no. 1, pp. 2447-2449 1998.
[4]     J. Deng, Device Modeling and Circuit Performance Evaluation for Nanoscale Devices: Silicon Technology Beyond 45 Nm Node and Carbon Nanotube Field Effect Transistors. Stanford University, Serra Mall, Stanford, United States, pp. 1-9, 138-142 and 152, June, 2007.
[5]      M. Shafizadeh and A. Rezai,” Improved device performance in a CNTFET using La2O3 high-κ dielectrics”, Journal of Computational Electronics, 2017.
[6]      A. Karimiz and A. Rezai,” A Design Methodology to Optimize the Device Performance in CNTFET”, ECS Journal of Solid State Science and Technology, July 11, 2017.
[7]      F. Calmon, C. Andrei, O. Valorge, J.C.N. Perez, J. Verdier, and C. Gontrand, “Impact of Low-Frequency Substrate Disturbances on a 4.5GHz VCO”, Microelectronics journal, vol. 37, no. 10, pp. 1119–1127, 2006.
[8]      H.C. Chiu, C.S. Cheng, Y.T. Yang and C.C. Wei, “A 10 GHz Low Phase-Noise CMOS Voltage-Controlled Oscillator Using Dual-Transformer Technology”, Solid-State Electronics. vol. 52, no. 5, pp. 765–770, 2008.
[9]      Y.A. Eken and P. John, “A 5.9 GHz Voltage-Controlled Ring Oscillator in 0.18-um CMOS”, IEEE J. Solid-state Circuits vol. 39, no. 1, pp. 230–233, 2004.
[10]      K.H. Cheng, Y.C. Tsai, Y. L. Lo and J.S. Huang, “A 0.5-V 0.4–2.24-GHz Inductorless Phase-Locked Loop in a System-on-Chip”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 849–859, 2011.
[11]      K. H. Tsai and S. I. Liu, “A 104-GHz Phase-Locked Loop Using a VCO at Second Pole Frequency”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 80-88, 2012.
[12]      W.S.T. Yan and H.C. Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage- Controlled Ring Oscillator”, IEEE Transactions on circuits and systems II: analog and digital signal processing, vol. 48, no. 2, pp. 216–221, 2001.
[13]      L. Dai and R. Harjani, “Design of Low-Phase-Noise CMOS Ring-Oscillators”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 5. pp. 328–338, 2002.
[14]      W. Fei, H. Yu, H. Fu, J. Ren and K.S. Yeo, “Design and Analysis of Wide Frequency Tunning Range CMOS 60 GHz VCO by Switching Inductor Loaded Transformer”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 699-710, 2014.
[15]      R.Y. Chen and W.Y. Chen, "A High-Speed Fast-Acquisition CMOS Phase/Frequency Detector for MB-OFDM UWB" IEEE Transactions on Consumer Electronics, vol. 53, no.1, pp.23, 26, 2007.
[16]      M. Soyuer and R.G. Meyer, “Frequency Limitations of a Conventional Phase-Frequency Detector” IEEE Journal of solid-state circuits, vol. 25, no. 4, pp. 1019-1022, 1990.
[17]      H. R Erfani-Jazi and N. Ghaderi, “A Divider-less, High Speed and Wide Locking Range Phase Locked Loop” AEU-International Journal of Electronics and Communications, vol. 69, no. 4, pp. 722-729, 2015.
[18]      M.K. Hati and T.K. Bhattacharyya, "A High o/p Resistance, Wide Swing and Perfect Current Matching Charge Pump Having Switching Circuit for PLL", Microelectronics Journal, vol. 44, no. 8, pp. 649-657, Aug. 2013.
[19]      P. Liu, P.Sun, J. Jumg and D. Heo,” PLL Charge Pump with Adaptive Body-Bias Compensation for Minimum Current Variatio”, Electronics Letters, vol.4, No.1, pp.16-18,2012.
[20]      F. Yuan, CMOS Active Inductors and Transformers Principle, Implementation, and Applications, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada. pp. 17-21, 29-55, 199-202 and 231-253, Dec. 2007.
[21]      F. Yuan, “A Fully Differential VCO Cell with Active Inductors for Gbps Serial Links”, Analog Integrated Circuits and Signal Processing, vol. 47, no. 2, pp. 213–223, 2005.
[22]      A. Thanachayanont, “CMOS Transistor-Only Active Inductor for If/Rf Applications”. IEEE International Conference on Industrial Technology, ICIT'02. vol.2, no.1, pp. 1209–1212, 2002.
[23]      A. Amani Beni and N. Ghaderi, “A High Speed Voltage Controlled Oscillator with Carbon Nanotube Field Effect Trransistors”, 3rd National & 1st International Conf. Applied Research in Electrical, Mechanical & Mechatronic, Malek e Ashtar university, Tehran, 2016. (in Persian)
[24]      J. Yang, C.Y. Kim, D.W. Kim and S. Hong, “Design of a 24-GHz CMOS VCO With an Asymmetric-Width Transformer”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, No. 3, pp. 173-177, 2010.
[25]      H. Ramiah, C.W. Keat and J. Kanesan, Design of Low- Phase Noise, Low Power Ring Oscillator for OC-48 Application, IETE Journal of Research. vol. 58, no. 5, pp. 425-428, 2012.
[26]      K.H. Cheng, T.H. Yao, S.Y. Jiang and W.B. Yang, “A Difference Detector PFD for Low Jitter PLL”, In Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on. vol. 1, pp. 43-46, 2001.
[27]      Y. Sun, L. Siek and P. Song, "Design of a High Performance Charge Pump Circuit for Low Voltage Phase-locked Loops", In Integrated Circuits, 2007. ISIC'07. International Symposium on, pp. 271,274, Sept. 2007.
[28]      F. Ge, “PFD-CP Phase Locked Loop Design”, PLL Design, 2001.
[29]      W.H. Chiu, Y.H. Huang, and T.H. Lin, “A Dynamic Phase Error Compensation Technique for Fast-Locking Phase- Locked Loops”, IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1137-1149, 2010.
[30]      P.K. Tsai and T.H. Huang, “Integration of Current-Reused VCO and Frequency Tripler for 24-GHz Low-Power Phase-Locked Loop Applications”, IEEE Transactions on Circuits and Systems II: Express Brief, vol. 59, no. 4, pp. 199-203, 2012.
[31]      I.T. Lee, Y.T. Tsai and S.I. Liu, “A Fast-Locking Phase-Locked Loop Using CP Control and Gated VCO, VLSI Design”, In VLSI Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on, pp. 1-4, 2012.
[32]      J. Deng and H.-S. Wong, “A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: Full device model and circuit performance benchmarking” IEEE Trans. Electron Devices, vol. 54, pp. 3195-3205, 2007.