Exploiting Multi-Node Device-to-Device Communications for Wireless Video Delivery over Cellular Networks

Document Type : Original Article

Authors

1 Faculty of Computer Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran

2 Faculty of Electrical and Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran,

Abstract

The video is a popular service among users which plays an important role in the networks traffic and has hugest volume of data compared to other types of communications. In recent years, the great willingness of users to watch live videos has attracted the researchers to the networks equipped with content saving devices in which the video content is saved in advance within the edge devices (small stations and smart devices) for fast delivery. In this paper, we have proposed a new method to send the video content based on the D2D connection and providing a multi-connection and multi-user opportunities. According to the random nature of the popularity of video content and the random demands of users in the network, the authors of the article use the random distribution of popularity among users to investigate the probability of sending the same content to some users simultaneously. In this method, the requests of some users are answered by one response. Extensive simulations results of the proposed method reveals the important effect of the random distribution of video content popularity and show that using multi-link D2D connections can cause significant improvements in the efficiency of the network in term of the network throughput.

Highlights

 

Keywords


[1]     A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Communications Surveys & Tutorials, vol. 16, pp. 1801-1819, 2014.
[2]     N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, "Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution," IEEE Communications Magazine, vol. 51, pp. 142-149, 2013.
[3]     M. Ji, G. Caire, and A. F. Molisch, "Fundamental limits of caching in wireless D2D networks," IEEE Transactions on Information Theory, vol. 62, pp. 849-869, 2016.
[4]    N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis,"Base-station assisted device-to-device communications for high-throughput wireless video networks," IEEE Transactions on Wireless Communications, vol. 13, pp. 3665-3676, 2014.
[5]     M. Afshang, H. S. Dhillon, and P. H. J. Chong, "Modeling and performance analysis of clustered device-to-device networks," IEEE Transactions on Wireless Communications, vol. 15, pp. 4957-4972, 2016.
[6]     M. Ji, G. Caire, and A. F. Molisch, "The throughput-outage tradeoff of wireless one-hop caching networks," IEEE Transactions on Information Theory, vol. 61, pp. 6833-6859, 2015.
[7]     M. Ji, G. Caire, and A. F. Molisch, "Wireless device-to-device caching networks: Basic principles and system performance," IEEE Journal on Selected Areas in Communications, vol. 34, pp. 176-189, 2016.
[8]     K. Zhu, W. Zhi, L. Zhang, X. Chen, and X. Fu, "Social-Aware Incentivized Caching for D2D Communications," IEEE Access, vol. 4, pp. 7585-7593, 2016.
[9]     Z. Chen, Y. Liu, B. Zhou, and M. Tao, "Caching incentive design in wireless D2D networks: A stackelberg game approach," in Communications (ICC), 2016 IEEE International Conference on, pp. 1-6, 2012.
[10]  M. Naslcheraghi, L. Marandi, and S. A. Ghorashi, "A Novel Device-to-Device Discovery Scheme for Underlay Cellular Networks," arXiv preprint arXiv:1702.08053, 2017.
[11]  A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. Maccartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, vol. 52, pp. 78-86, 2014.
[12]  D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, "A graph-coloring secondary resource allocation for D2D communications in LTE networks," in Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2012 IEEE 17th International Workshop on, pp. 56-6, 2012.
[13]  P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE Transactions on information theory, vol. 46, pp. 388-404, 2000.
[14]  R. Chithra, R. Bestak, and S.K. Patra,  "An interference cancellation scheme for D2D multi-link communication underlaying cellular network," Annals of Telecommunications71(1-2), pp. 47-60, 2016.
[15]  M. Afshang, H. S. Dhillon, and P. H. J. Chong, "Modelling and performance analysis of clustered device-to-device networks," IEEE Transactions on Wireless Communications, vol. 15(7), pp. 4957-4972, 2016.
[16]  X. Lin, J. G. Andrews, and A. Ghosh, "Spectrum sharing for device-to-device communication in cellular networks," IEEE Transactions on Wireless Communications, vol. 13(12), pp. 6727-6740, 2014.
[17]  M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S.Moon, "I tube, you tube, everybody tubes: analyzing the world's largest user generated content video system," In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pp. 1-14, 2007.
[18]  علیرضا سردار، رمضان هاونگی، «بهبود عملکرد الگوریتم خوشه یابی خودکار تصاویر رنگی به کمک پیش پردازش با شبکه عصبی خود ساماند(SOM)»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3 - شماره پیاپی 81، صفحه 1073-1082، پاییز 1396.
[19]  وحیده منعمی‌زاده، جواد حمیدزاده،«جستجوی k نزدیک ترین همسایه تقریبی با روش ترکیب خطی»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3، شماره پیاپی 81، صفحه  1237-1249، پاییز 1396.