A Framework for Clustering of Micro Grids in Energy Smart Grids using the Apollonius Circle

Document Type : Original Article


Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran


Today, energy supplies and transportation are not traditionally affordable. So smart grids mean intelligent energy management and lower energy costs for consumers. Significant features of smart grids, scalability, resilient network distribution capability, lower network cost distribution, network flexibility and fault tolerance. All of these features appear in the concept of a micro-grid. The use of scattered products in micro energy networks has many environmental, economic and technical benefits. Optimization of the location and magnitude of generators in micro-grids plays an important role in reducing energy losses. Optimal clustering of micro-networks is also a major challenge in this regard. In this paper, we present a framework for clustering of small networks using Apollonius circular algorithm. Apollonius circles increase the precision of clustering with the help of geometric structure and high precision. Performance is equal to 5.38% for distance criterion and 16.15% for the system energy losses, and finally, 14.79% of the total annual cost is better than the past work done. Then, we have used the simulated annealing algorithm to compensate for the lack of power micro-grids and the stability of the entire network, which this action led to reducing energy losses in the amount of 26.54 kw in study grid.


[1]      Vehbi C. Güngör, Dilan Sahin, Taskin Kocak, Salih Ergüt, Concettina Buccella, Carlo Cecati and Gerhard P. Hancke, “Smart Grid Technologies: Communication Technologies and Standards”, IEEE Transaction on indastrial informatics, vol. 7, no. 4, november 2011.
[2]      A. Ipakchi and F. Albuyeh, “Grid of the future, IEEE Power Energy Mag”, vol. 7, no. 2, pp. 52–62, Mar.–Apr. 2009.
[3]      Ban Al-Omar, A. R. Al-Ali, Rana Ahmed, and Taha Landolsi, “Role of Information and Comunication Technologies in the Smart Grid”, Journal of Emerging Trends in Computing and Information Sciences, vol. 3, no. 5, May 2012.
[4]      D. Q. Hung and N. Mithulananthan, “Multiple distributed generator placement in primary distribution networks for loss reduction”, IEEE Trans. Ind. Electron. vol. 60, no. 4, pp.1700-1708, April 2013.
[5]      M. H. Moradi and M. Aedini, “A Combination of genetic algorithm and partical swarm optimization for optimal DG location and sizing in distribution system”, Int. J. Electr. Power Energy Syst. vol. 34, no. 1, pp. 66-74, Jan. 2012.
[6]      V. Jagan Mohan and T. Arul Dass Alber, “Optimal sizing and sitting of distributed generation using Particle Swarm Optimization Guided Genetic”.
[7]      Algorithm, Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 5, pp. 709-720, 2017.
[8]      M. Kefayat, A. Lashkar Ara, S.A. Nabavi Niaki ,  “A  hybrid  of  ant colony optimization  and  artificial  bee  colony  algorithm  for  probabilistic  optimal placement  and  sizing  of  distributed  energy  resources”.  Energy  Conversion  and Management 92, 149-161, 2015.
[9]      Ashish K Peter, “Modified Shuffled Frog-Leaping Algorithm Based Determination of Optimal Size and Location of Distributed Generation in Radial Distribution System”, IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939, 2017.
[10]      Arash Lotfipour, Hossein Afrakhte, “A discrete Teaching–Learning-Based Optimization algorithm to solve distribution system reconfiguration in presence of distributed generation”, Electrical Power and Energy Systems 82, 264–273, 2016.
[11]      Zhu JZ. “Optimal reconfiguration of electrical distribution network using the refined genetic algorithm. Electric” Power Syst Res;62(1):37–42, 2002.
[12]      Seyed Abbas Taher, Mohammad Hossein Karimi, “Optimal reconfiguration and DG allocation in balanced and unbalanced distribution systems”, Ain Shams Engineering Journal 5, 735–749, 2014.
[13]      Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nick Jennings, “Agent-Based Control for Decentralised Demand Side Management in the Smart Grid”, May, 2–6, Taipei, Taiwan, pp. 5-12, 2011.
[14]      A.A. Aquino and T.J. Overbye, “Distributed Intelligent Agents for Service Restoration and Control Applications”, IEEE 40 North American Power Symposium, September 2008.
[15]      S. Mojtahedzadeh, S. Najafi Ravadanegh, M. R. Haghifan, “A framework for optimal clustering of a greenfield distribution network area into multiple autonomous microgrids”, Journal of Power Technologies 96 (4), 219–228, 2016.
[16]      Mahmoud S.  Saleh,  Ammar Althaibani,  YusefEsa, Yassine Mhandi, Ahmed A. Mohamed, “Impact  of Clustering Microgrids on  Their  Stability  and Resilience during Blackouts”,  International  Conference on  Smart  Grid and  Clean  Energy Technologies (ICSGCE), 15935984, Offenburg, Germany, 20-23 Oct. 2015.
[17]      Mohammad Abedinia, Mohammad H. Moradi, S.M. Hosseinian, “Optimal clustering of MGs based on droop controller for improving reliability using a hybrid of harmony search and genetic algorithms”, ISA. Published by Elsevier Ltd., 2015.
[18]      N. Rugthaicharoencheep, and S. Sirisumrannukul, Feeder Reconfiguration with Dispatchable Distributed Generators in Distribution System by Tabu Search, ieeexplore.ieee.org, 2009.
[19]      S. A. Arefifar and Y. A. I. Mohamed, "DG Mix, Reactive Sources and Energy Storage Units for Optimizing Microgrid Reliability and Supply Security," in IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1835-1844, July 2014.
[20]      S. A. Arefifar, Y. A. -. I. Mohamed and T. H. M. EL-Fouly, "Optimum Microgrid Design for Enhancing Reliability and Supply-Security," in IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1567-1575, Sept. 2013.
[21]      Ramadoni Syahputr, Rama Okta Wiyagi, Slamet Suripto, Agus Jamal,Karisma Trinanda Putra, Faaris Mujaahid, “A Novel Fuzzy Approach for Multi-objective Optimization of Distribution Network Configuration in Complex System”, International Journal of Applied Engineering Research ISSN 0973 -4562 Volume 13, Number 2, pp. 1120-1127, 2018.
[22]      Melike Erol-Kantarci, Burak Kantarci, Hussein T. Mouftah, “Cost-Aware Smart Microgrid Network Design for a Sustainable Smart Grid”, IEEE International Workshop on Smart Grid Communications and Networks, 2011 IEEE.
[23]      C.A. Cortes, S. F. Contreras, and M. Shahidehpour, “Microgrid Topology Planning for Enhancing the Reliability of Active Distribution Networks”, 1949-3053 (c) 2016 IEEE.
[24]      Seyed Ali Arefifar, Yasser A.-R. I. Mohamed,and Tarek H. M. EL-Fouly, “Optimum Microgrid Design for Enhancing Reliability and Supply-Security”, 1949-3053 © 2013.
[25]      Melike Erol-Kantarci, Burak Kantarci, and Hussein T. Mouftah, University of Ottawa, “Reliable Overlay Topology Design for the Smart Microgrid Network”, IEEE Network • September/October 2011.
[26]      Majid Nayeripoura, Saeed Hasanvand, Eberhard Waffenschmidt, Hossein Fallahzadeh-Abarghouei, “A New Approach to Transform an Existing Distribution Network into a set of Micro-Grids for Enhancing Reliability and Sustainability”, S1568-4946(16)30631-7, ASOC 3952, 4-12-2016.
[27]      Sandeep Kaur, G. B. Kumbhar, Jaydev Sharma, “Harmony Search and OPF Based Hybrid Approach for Optimal Placement of Multiple DG Units”, 978-1-4799-5141-3/14/$31.00 ©2014 IEEE.
[28]      Y. Mohamed Shuaib, M. Surya Kalavathi, C. Christober Asir Rajan, “Optimal capacitor placement in radial distribution system using Gravitational Search Algorithm”, Elsevier Ltd, 2014.
[29]      سعید عباسپور، کاظم زارع و بهنام محمدی ایواتلو،  »ارزیابی جنبه های فنی و اقتصادی شبکه توزیع با هدف توسعه DG بر مبنای کاربرد مدیریت اکتیو در شبکه .» مجله مهندسی برق دانشگاه تبریز، جلد 44 ،شماره 4 ،صفحات 35-45 ،1393 .
[30]      حسین کرمی پرزانی، بهروز ذاکر، میالد نصیری و هادی طاریمرادی،  » مکان یابی بهینه DSTATCOMها و DG ها به‌منظورکاهش تلفات و افزایش قابلیت بارپذیری .» مجله مهندسی برق دانشگاه، جلد 47 ، شماره 1، صفحات 38-29، 1396.
[31]      S. Pourbahrami, L. M. Khanli, and S. Azimpour, “A novel and efficient data point neighborhood construction algorithm based on Apollonius circle,” Expert Systems with Applications, vol. 115, pp. 57-67, 2019.
[32]      https://www.civilica.com/Paper-DCBDP03-DCBDP03_099.html/.3rd National Conference on Distributed Computing and Big Data Processing, Nov 12, 2016.
[33]      T. Logenthiran, Dipti Srinivasan and Ashwin M Khambadkone, “Multi-Agent System for Energy Resource Scheduling of Integrated Microgrids in Distributed System”, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Electric Power Systems– Elsevier,  2011.
[34]      Dr.gassabi, m.abuie, m.gahremanimanesh, “Statistical identification of the clustering pattern”, spring 2014.
[35]      Pranav Nerurkar, Archana Shirke, Madhav Chandane, Sunil Bhirud, “Empirical Analysis of Data Clustering Algorithms”, Procedia Computer Science 125, 770–779, 2018.
[36]      M.nabilu, N.daneshpour, “Provide a clustering algorithm for batch data by combining metrics”, soft computing journal, spring 2016.