A New Method for Reliability Evaluation of Active Networks

Document Type : Original Article

Authors

1 Faculty Engineering, University of Kurdistan, Sanandaj, Iran

2 Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

Monte Carlo simulation method is widely used in reliability evaluation of distribution networks. The most important advantage of this method is their simplicity and flexibility to apply to any system. In contrast, large volumes of calculations and inaccurate results are the disadvantages of this method. In this paper, a new method for evaluating reliability indices in active networks is proposed. This method is a combination of Monte Carlo simulation method and analytical method. Unlike the simulation methods, it has a unique answer. Considering that, the purpose of this new method for reliability evaluation is filling gaps in the Monte Carlo simulation method, As a result, the Monte Carlo method will be examined in more detail. To prove the effectiveness of this method, evaluation of reliability indices for bus 2 of RBTS in an inactive network state and in active network state (modified RBTS Bus 2 and 4, including distributed generation resources and Energy storage) using new method and Monte Carlo method have been done and compared with each other. Results of these two methods show that the new method has accurate results and its implementation time is less than the Monte Carlo method.

Keywords


[1]      D. S. Orkand, “A Monte Carlo method for determining lower confidence limits for system reliability on the basis of sample component data,” No. ORDBB-VC-4, PICATINNY ARSENAL DOVER NJ, 1960.
[2]      T. L. Burnett and W. A. Beverly, “System reliability confidence limits,” In Proceedings of the Seventh National Symposium on Reliability and Quality Control, pp. 118-128, 1961.
[3]      S. J. Kamat and M. W. Riley, “Determination of reliability using event-based Monte Carlo simulation,” IEEE Transactions on Reliability 24, no. 1, pp. 73-75, 1975.
[4]      H. Kumamoto, K. Tanaka, K. Inoue, “Efficient evaluation of system reliability by Monte Carlo method,” IEEE Transactions on Reliability, Vol R-26, pp. 311-315, Dec 1977.
[5]      H. Kumamoto, T. Tanaka, and K. Inoue, “A new Monte Carlo method for evaluating system-failure probability,” IEEE Transactions on Reliability, Vol. 36, pp. 63-69, 1987.
[6]      R. Billinton and L. Wenyuan, “Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte Carlo simulation and enumeration technique,” IEE Proceedings-C, Vol.138, No.3, May 1991.
[7]      M.V.F. Pereira, M. E. P. Maceira, G. C. Oliveira, L. M. V. G. Pinto, “Combining analytical models and Monte Carlo techniques in probabilistic power system analysis,” IEEE Trans. on Power Systems, Vol. 7, No.1, Feb. 1992.
[8]      L. L. Levy and A. H. Moore, “A Monte Carlo technique for obtaining system reliability confidence limits from component test data,” IEEE Transactions on Reliability, no. 2, pp. 69-72, 1967.
[9]      A. Sankarakrishnan and R. Billinton, “Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads,” IEEE/PES 1995 Winter Meeting, New York, N. Y. IEEE, 1995.
[10]      امیرحسین فرجی، مقداد تورانداز کناری، محمد صادق سپاسیان، مهرداد ستایش‌نظر، » ارزیابی احتمالاتی ولتاژ شبکه‌های توزیع فعال با درنظرگرفتن همبستگی بین واحدهای فتوولتائیک«، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحه 1169-1161، پاییز 1396
[11]      R. A. Bakkiyaraj and N. Kumarappan, “Evaluation of composite reliability indices based on non-sequential Monte Carlo simulation and particle swarm optimization,” In Evolutionary Computation, 2010 IEEE Congress on, pp. 1-5, 2010.
[12]      G. Celli, G., E. Ghiani, G. G. Soma, and F. Pilo, “Active distribution network reliability assessment with a pseudo sequential Monte Carlo method,” In PowerTech, Trondheim, IEEE, pp. 1-8, 2011.
[13]      A. S. N. Huda and R. Živanović, “Distribution system reliability assessment using sequential multilevel Monte Carlo method,” In Innovative Smart Grid Technologies-Asia, IEEE, pp. 867-872, 2016.
[14]      T. Yan, W. Tang, Y. Wang, and X. Zhang, “Reliability assessment of a multi-state distribution system with microgrids based on an accelerated Monte-Carlo method,” IET Generation, Transmission & Distribution, Vol. 12, pp. 3221 – 3229, 2018.
[15]      R. Hanna, Ryan, V. R. Disfani, and J. Kleissl, “Reliability evaluation for microgrids using cross-entropy Monte Carlo simulation”, In 2018 IEEE International conference on Probabilistic Methods Applied to Power Systems, pp. 1-6, 2018.
[16]      R. Billinton, and P. Wang, “Teaching distribution system reliability evaluation using Monte Carlo simulation,” IEEE Transactions on Power Systems, pp. 397-403, 1999.
[17]      R. N. Allan, R. Billinton, I. Sjarief, L. Goel, and K. S. So, “A reliability test system for educational purposes-basic distribution system data and results,” IEEE Transactions on Power systems, Vol. 6, no. 2, pp. 813-820, 1991.
[18]      R. N. Allan, Reliability Evaluation of Power Systems, Springer Science & Business Media, 2013.
[19]      مجید نیری پور، سعید حسنوند، حسین فلاح زاده ابرقوئی، » برنامه ریزی توسعه ظرفیت با در نظر گرفتن قابلیت اطمینان سیستم به‌منظور تبدیل شبکه توزیع موجود به ریزشبکه«، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحه 774-761 تابستان 1396
[20]      S. Hasanvand, M. Nayeripour, E. Waffenschmidt, and H. F. Abarghouei, “A new approach to transform an existing distribution network into a set of micro-grids for enhancing reliability and sustainability,” Applied Soft Computing, pp.120-134, 2017.
[21]      Monthly average solar radiation data from NASA surface meteorology and solar energy program (SSE), 2017, http://eosweb.larc.nasa.gov/sse/.
[22]      S. Wang, Z. Li, L. Wu, M. Shahidehpour and Z. Li, “New metrics for assessing the reliability and economics of microgrids in distribution system,” IEEE Transactions on Power Systems, pp.2852-2861, 2013.