A Decision Tree-based Method of Loss of Excitation Protection of Synchronous Generators in Presence of UPFC

Document Type : Original Article

Authors

Faculty of Engineering, Shahid Chamran University, Ahwaz, Iran

Abstract

In this paper, a Decision Tree-based method of Loss of Excitation (LOE) Protection of Synchronous Generators in Presence of Unified Power Flow Controller (UPFC) is presented. The presence of UPFC causes the Berdy relay to be delayed in detecting LOE. In the proposed method, different variables are considered and in the various test and training patterns and using intelligent algorithms, the most suitable variables selected to increases the accuracy in detecting the time of LOE. The simulation results in Matlab/Simulink software validate the accuracy of the proposed method in various loadings, different percentages of loss of excitation, various scenarios of fault and noisy conditions. The results reveal that the proposed method has a better classification accuracy and a higher identification speed under new and unseen operating conditions of LOE and external faults compared to traditional methods.

Keywords


[1]      IEEE Std. 421.5, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, 2005.
[2]      P. Kundur, Power System Stability and Control, McGraw-Hill, New York, 1994.
[3]      N. G. Hingorani and L. Gyugyi, Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems. NewYork, USA: Wiley, 1999.
[4]      A. Ghorbani, H. M. Lima, A. Azadru and B. Mozafari, "Impact of fixed series capacitors and SSSC on the LOE protection of synchronous generator," Journal of Electrical Engineering & Technology, vol. 10, no. 4, pp. 1453-1459, 2015.
[5]      A. Ghorbani, B. Mozafari, S. Soleymani and AM. Ranjbar. "Operation of synchronous generator LOE protection in the presence of shunt-FACTS," Electric Power Systems Research, vol. 119, no. 1, pp. 178-186, 2015.
[6]      M. Elsamahy, S.O. Faried and T. Sidhu, "Impact of midpoint STATCOM on generator loss of excitation protection, " IEEE Transactions on Power Delivery, vol. 29, no. 2, pp. 724-732, 2014.
[7]      R. Dubey, S. Samantaray, B. Panigrahi and G. Venkoparao, "Adaptive distance relay setting for parallel transmission network connecting wind farms and UPFC, " International Journal of Electrical Power & Energy Systems, vol. 65, pp. 113–123, 2015.
[8]      S.Y. Ebrahimi and A. Ghorbani, "Performance comparison of LOE protection of synchronous generator in the presence of UPFC," Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 71-78, 2015.
[9]      A. Ghorbani, S. Soleymani and B. Mozafari. "A PMU-based LOE protection of synchronous generator in the presence of GIPFC." IEEE Transactions on Power Delivery, vol. 13, no. 2, pp. 551-558, 2016.
[10]      B. Fan, X. Li, P. Xue and J. Liu, "The research UL-P of loss-of-excitation protection for generator based on the artificial neural networks,” Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific, pp. 1-4, 2009.
[11]      S.R. Tambay, and YG. Paithankar, "A new adaptive loss of excitation relay augmented by rate of change of reactance," Power Engineering Society General Meeting, 2005. IEEE, pp. 1831-1835, 2005.
[12]      A.P. de Morais, G. Cardoso, and L. Mariotto, "An innovative loss-of-excitation protection based on the fuzzy inference mechanism, " IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2197-2204, 2010.
[13]      T. Amraee, "Loss-of-field detection in synchronous generators using decision tree technique," IET Generation, Transmission & Distribution, vol. 7, no. 9, pp. 943-954, 2013.
[14]      M. Amini, M. Davarpanah and M. Sanaye-Pasand, "A novel approach to detect the synchronous generator loss of excitation," IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1429-1438, 2015.
[15]      B. Mahamedi, J.G. Zhu and SM. Hashemi, "A setting-free approach to detecting loss of excitation in synchronous generators," IEEE Transactions on Power Delivery, vol. 31, no. 5, pp. 2270-2278, 2016.
[16]      N. Noroozi, H. Yaghobi and Y. Alinejad-Beromi, "Analytical technique for synchronous generator loss-of-excitation protection, " IET Generation, Transmission & Distribution, vol. 11, pp. 9, pp. 2222-2231, 2017.
[17]      M. Abedini, M. Sanaye-Pasand and M. Davarpanah, "An analytical approach to detect generator loss of excitation based on internal voltage calculation, " IEEE Transactions on Power Delivery, vol. 32, no. 5, pp. 2329-2338, 2017.
[18]      H. Yaghobi, "Impact of static synchronous compensator on flux-based synchronous generator loss of excitation protection," IET Generation, Transmission & Distribution, vol. 9, no.9, pp. 874-883, 2015.
[19]    عباس صابری نوقانی و نادر هاتفی ترشیزی، «تنظیم بهینه رله دیستانس با در نظر گرفتن عدم قطعیت‌ها»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره1، صفحات 421-431، 1395
[20]      وحید فتحی، هیرش سیدی و ابراهیم بابایی، «بهبود عملکرد رله‌های دیستانس در حفاظت خطوط انتقال کوتاه»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره2، صفحات 29-21، 1392
[21]      C.R. Mason, "A new loss-of-excitation relay for synchronous generators," American Institute of Electrical Engineers,” Transactions of the American Institute of Electrical Engineers, vol. 68, no. 2, pp. 1240-1245, 1949.
[22]      J. Berdy, "Loss of excitation protection for modern synchronous generators," IEEE Transactions on Power Apparatus and Systems, vol. 94, no. 5, pp. 1457-1463, 1975.
[23]      P.K. Ray, S.R. Mohanty, N. Kishor, JP Catalão and K.  Prakash, "Optimal feature and decision tree-based classification of power quality disturbances in distributed generation systems," IEEE Transactions on Sustainable Energy, vol. 5, no.1, pp. 200-208, 2014.
[24]      O. Ozgonenel and S. Karagol, "Power transformer protection based on decision tree approach," IET Electric Power Applications, vol. 8, no. 7, pp. 251-256, 2014.
[25]      A.G. Phadke and S.T. James, Computer Relaying for Power Systems, John Wiley & Sons, 2009.
[26]      R. E. Cavicchi, C. Collett, S. Telikepalli, Z. Hu, M. Carrier, and D. C. Ripple, "Variable threshold method for determining the boundaries of imaged subvisible particles, " Journal of pharmaceutical sciences, vol.106, no. 6, pp.1499-1507, 2017.
[27]      Z. Moravej, A. A. Abdoos, M. Sanaye‐Pasand, "Power transformer protection scheme based on time‐frequency analysis," International transactions on electrical energy systems, vol. 23, no. 4, pp. 473-493, 2013.