[1] Y. Ishiguchi, D. Isogai, T. Osawa and S. Nakatake, “Analog perceptron circuit with DAC-based multiplier,” Integration, the VLSI journal, vol. 63, pp. 240-247, 2018.
[2] W. Liu and S. I. Liu, “Design of a CMOS low-power and low-voltage four-quadrant analog multiplier,” Analog Integr CircS, vol. 63, no. 2, pp. 307-312, 2010.
[3] H. Sajjadi-Kia, “An analog cell and its applications in analog signal processing,” Int. J. Circ Theory App, vol. 63, pp. 195-201, 2011.
[4] V. J. S. Oliveira and N. Oki, “Low voltage four-quadrant current multiplier: an improved topology for n-well CMOS technology,” Analog Integrated Circuits and Signal Processing, vol. 65, no. 1, pp. 61-66, 2010.
[5] M. M. Maryan and S. J. Azhari, “A MOS translinear cell-based configurable block for current-mode analog signal processing,” Analog Integr. Circuits Signal Process, vol. 92, no. 1, pp. 1-13, 2017.
[6] حسین مرادی فراهانی و جواد عسگری، «طراحی کنترلکننده عصبی- فازی نوع-2»، مجله مهندسی برق، جلد 43، شماره 1، صفحات 63-73، دانشگاه تبریز، 1392.
[7] فرشاد گودرزی و سیروس طوفان، «بهبود مدار آشکارساز فاز- فرکانس مبتنی بر لچ پالس برای افزایش ناحیه تشخیص و فرکانس کاری مدار»، مجله مهندسی برق، جلد 48، شماره 1، صفحات 283-289، دانشگاه تبریز، 1397.
[8] S. C. Lui, J. Kramer, G. Indiveri, T. Delbruck and R. Douglas, “Analog VLSI: Circuits and Principles,” Cambridge, MA, USA: Massachusetts Institute of Technology Press, 2002.
[9] I. M. Filanovsky and H. Baltes, “CMOS two-quadrant multiplier using transistor triode regime,” IEEE J Solid-St Circ, vol. 27, no. 5, pp. 831-833, 1992.
[10] E. S. Al-Suhaibani and A. M. Al-Absi, “A compact CMOS current mode analog multi-functions circuit,” Analog Integr Circ Sig Process, vol. 84, no. 3, pp. 471-477, 2015.
[11] K. Tanno, O. Ishizuka and Z. Tang, “Four-quadrant CMOS current-mode multiplier independent of device parameters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 5, pp. 473-477, 2000.
[12] I. Makwana and V. Shet, “A low power high bandwidth four quadrant analog multiplier in 32 nm CNFET technology,” International Journal of VLSI design & Communication Systems (VLSICS), vol. 3, no. 2, pp. 73-83, 2012.
[13] S. Keles and H. H. Kuntman, “Four quadrant FGMOS analog multiplier,” Turk J Elec Eng & Comp Sci, vol. 19, no. 2, pp. 291-301, 2011.
[14] S. Soltany and A. Rezai, “A new low power four quadrant analog multiplier,” Information Technology and Computer Science, vol. 106, pp. 33-36, 2015.
[15] S. Soltany and A. Rezai, “A novel low power and low voltage bulk-input four-quadrant analog multiplier in voltage mode,” International Journal of Multimedia and Ubiquitous Engineering, vol. 11, no. 1, pp. 159-168, 2016.
[16] C. Popa, “Improved accuracy current-mode multiplier circuits with applications in analog signal processing,” IEEE Trans.Very Large Scale Integr. VLSI Syst, vol. 22, no. 2, pp. 443–447, 2014.
[17] M. Hashiesh, S. Mahmoud and A. M. Soliman, “New four-quadrant CMOS current-mode and voltage-mode multipliers,” Analog Integr. Circuits Signal Process, vol. 45, no. 3, pp. 295–307, 2005.
[18] A. Demosthenous and M. Panovic, “Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI,” IEEE Trans. Circuits Syst. I, vol. 52, no. 9, pp. 1721–1731, 2005.
[19] A. U. Keskin, “A four quadrant analog multiplier employing CDBA,” Analog Integr. Circuits Signal Process., vol. 40, no. 1, pp. 99–101, 2004.
[20] E. Yuce, “Voltage-mode multiplier implementation employing current conveyors,” Electron. World, vol. 112, no. 1850, pp. 45–47, 2006.
[21] A. Zeki, A. U. Keskin and A. Toker, “DXCCII-based four-quadrant analog multipliers using triode MOSFETs,” in Proc. 4th ELECO, Bursa, pp. 41–45, 2005.
[22] E. Yuce, “Design of a simple current-mode multiplier topology using a single CCCII+,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 3, pp. 631–637, 2008.
[23] M. T. Abuelma’atti and M. A. Al-Qahtani, “A current-mode current controlled current-conveyor-based analogue multiplier /divider,” Int. J.Electron., vol. 85, no. 1, pp. 71–77, 1998.
[24] M. T. Abuelma’atti, “A novel analogue current-mode current-controlled frequency divider/multiplier,” Int. J. Electron., vol. 89, no. 6, pp. 455– 465, 2002.
[25] K. Anuntahirunrat, W. Tangsrirat, V. Riewruja and W. Surakampontorn, “Sinusoidal frequency doubler and full-wave rectifier based on translinear current-controlled current conveyors,” Int. J. Electron., vol. 91, no. 4, pp. 227–239, 2004.
[26] A. Naderi and S. Ozoguz, “Design Of High-Linear, High-Precision Analog Multiplier Free From Body Effect,” Turkish Journal of Electrical Engineering and Computer Sciences, vol.24, no. 3, pp. 820-832, 2016.
[27] I. Aloui, N. Hassen and K. Besbes, “A CMOS current mode four quadrant analog multiplier free from mobility reduction,” AEU - International Journal of Electronics and Communications, vol. 82, pp. 119-126, 2017.
[28] M. Kumngern and U. Torteanchai, “A CMOS current-mode multiplier/divider using a current amplifier, ” Proceedings of the 7th International Power Engineering and Optimization Conference (PEOCO), pp. 742–745, 2013.
[29] M. Gravati, M. Valle, G. Ferri, N. Guerrini and L. Reyes, “A novel current-mode very low power analog CMOS four quadrant multiplier,” IEEE 2005 Solid State Circuits Conference, pp. 495-498, 2005.
[30] M. Kumngern and D. Kobchai. “Versatile dual-mode class-AB four-quadrant analog multiplier,” Int J Signal Process, vol. 2, no. 8, pp. 214-221, 2005.
[31] A. Alikhani and A. Ahmadi. “A novel current-mode four-quadrant CMOS analog multiplier/divider,”. Int J Electron Comm, vol. 66, no. 7, pp. 581-586, 2012.
[32] A. Lopez-Martin, A. Carlosena. “Current-mode multiplier/divider circuits based on the MOS translinear principle,” Analog Integr Circ S, vol. 28, no. 3, pp. 265-278, 2001.
[33] S. Menekay, R. Tarcan and H. Kuntman, “Novel high-precision current-mode circuits based on the MOS-translinear principle,” Int J Electron Comm, vol. 63, no. 11, pp. 992-997, 2009.
[34] S. Kaedi and E. Farshidi. “A new low voltage four-quadrant current mode multiplier,” IEEE 2012 20th Iranian Conference on Electrical Engineering, pp. 160-164, 2012.
[35] M. A. Al-Absi and I. A. As-Sabban, “A new highly accurate CMOS current-mode four-quadrant multiplier,” Arab J Sci Eng, vol. 40, pp. 551-558, 2015.
[36] A. Fabre, “New formulation to describe translinear mixed cells accurately,” Proc Inst Elect Eng,vol. 141, no. 3, pp. 167–73, 1994.
[37] H. A. Jafari, and Z. Abbasi and S. J. Azhari, “An offset-free high linear low power high speed four-quadrant MTL multiplier,” Italian Journal of Science & Engineering, vol. 1, no. 3, pp. 129–134, 2017.
[38] A. Alikhani and A. Ahmadi, “A novel current-mode four-quadrant CMOS analog multiplier/divider,” Int J Electron Comm, vol. 66, no. 7, pp. 581–586, 2012.
[39] S. Menekay, R. Tarcan and H. Kuntman, “Novel high-precision current-mode circuits based on the MOS-translinear principle,” Int J Electron Comm 2009, vol. 63, no. 11, pp. 992–997, 2009.
[40] S. Kaedi and E. Farshidi, “A new low voltage four-quadrant current mode multiplier,” In: IEEE 2012 20th Iranian Conference on Electrical Engineering; Tehran, Iran. New York, NY, USA: IEEE, pp. 160-164, 2012.
[41] I. Chaisayun, S. Piangprantong, K. Dejhan, (2012), “Versatile analog squarer and multiplier free from body effect. Analog Integrated Circuits and Signal Processing,” vol. 71, no. 3, pp. 539-547, 2012.
[42] E. Ibaragi, A. Hyogo and K. Sekine, “A CMOS analog multiplier free from mobility reduction and body effect,” Analog Integrated Circuits and Signal Processing, vol. 25, no. 3, pp. 281-290, 2000.
[43] A. Naderi, A. Khoei, K. Hadidi and H. Ghasemzadeh, “A new high speed and low power four-quadrant CMOS analog multiplier in current mode, ” AEU-Int. J. Electron. Commun, vol. 63, no. 9, pp. 769–775, 2009.
[44] C. Abel, S. Sakurai, E. Larsen and M. Ismail, “Four-quadrant CMOS/BiCMOS multipliers using linear-region MOS transistors,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 273–276, 1994.
[45] Y. Igarashi, A. Hyogo and K. Sekine, “Design of very low-distortion, four-quadrant analog multiplier-type CMOS-OTA considering variation of mobility according to the gate voltage,” Electron. Commun. Jpn. (Part II: Electron.), vol. 77, no. 7, pp. 65–76, 1994.
[46] A. Naderi, H. Mojarrad, H. Ghasemzadeh, A. Khoei, and K. Hadidi, “Four-quadrant CMOS analog multiplier based on new current squarer circuit with high-speed, ” EUROCON’2009. IEEE, pp. 282-287, 2009.
[47] J. K. Seon, “Design and application of precise analog computational circuits, ” Analog Integr. Circuits Signal Process, vol. 54, no. 1, pp. 55–66, 2008.
[48] S. Keles and H. H. Kuntman, “Four quadrant FGMOS analog multiplier,” Turk J Elec Eng & Comp Sci, vol. 19, no. 2, pp. 291-301, 2011.
[49] V. J. Oliveira and N. Oki, “Low voltage four-quadrant current multiplier: an improved topology for n-well CMOS process, ” Analog Integr. Circuits Signal Process, vol. 65, no. 1, pp. 61–66, 2010.
[50] A.S. Nandini., S. Madhavan and Dr chirag Sharma, “Design and Implementation of Analog Multiplier with Improved linearity” nternational Journal of VLSI design & communication systems (VLSICS), vol. 3, no. 5, pp. 631-637, 2012.
[51] H.–J. Song and C.-K. Kim, “An MOS four-quadrant analog multiplier using simple two-input squaring circuit with source follower,” IEEE Journal of Solid-State Circuits, vol. 25, no. 3, pp. 841-848, 1990.
[52] S-I. Liu and C-C. Chang, “CMOS analog divider and four-quadrant multiplier using pool circuits,” IEEE Journal Solid-State Circuits, vol. 30, no.9, pp. 1025-1029, 1995.
[53] N. Beyraghi, A. Khoei, and K. Hadidi, “CMOS design of a four quadrant multiplier based on a novel squarer circuit,” Analog Integr. Circuits Signal Process, vol. 80, no. 3, pp. 473–481, 2014.
[54] I. Navarro, A. J. Lopez-Martin, C A. De La Cruz-Bias, A. Carlosena, “A compact four-quadrant floating-gate MOS multiplier,” AnalogIntegrated Circuits and Signal Processing, vol. 41, no. 2-3, pp. 159-166, 2004.
J. M. A. Miguel, C A. De La Cruz Blas and A. Lopez-Martin, “Fully differential current-mode CMOS triode translinear multiplier,” IEEE T Circuits Syst, vol. 58, no. 1, pp. 21-25, 2011.
[55] F. Khateb, “Bulk-driven floating-gate and bulk-driven quasi-floating-gatetechniques for low-voltage low-power analog circuits design,” International Journal of Electronics and Communications (AEÜ), vol. 68, no. 1, pp. 64-72, 2014.
[56] A. K. M. Mahfuzul Islam, “Programmable Neuron Array Based on a 2-Transistor Multiplier Using Organic Floating-Gate for Intelligent Sensors,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 1, pp. 81-91, 2017.
[57] A. Panigrahi and P. K. Paul, “A novel bulk-input low voltage and low power four quadrant analog multiplier in weak inversion,” Analog Integrated Circuits and Signal Processing, voL 75, no. 2, pp. 237-243, 2013
[58] C. A. De La Cruz-Blas, G. Thomas-Erviti, J. M. Algueta-Miguel and A. López-Martín, “CMOS analogue current-mode multiplier/divider circuit operating in triode-saturation with bulk-driven techniques,” INTEGRATION, the VLSI journal, vol. 59, pp. 243-246, 2017.
[59] X. Xin, J. Cai, R. Xie and P. Wang, “Voltage-mode ultra-low power four quadrant multiplier using subthreshold PMOS,” IEICE Electronics Express, vol. 14, no. 6, pp. 1-8, 2017.
[60] M. A. Al-Absi, A. Hussein and M. TaherAbuelma’atti, “A Low Voltage and Low Power Current-Mode Analog Computational Circuit,” Circuits Syst Signal Process, vol. 32, no. 1, pp. 321-331, 2013.
[61] R. Wu and J. Xing, “MOS translinear principle based analog four-quadrant multiplier,” IEEE 2012 International Conference on Anti-Counterfeiting, Security and Identication, pp. 1-4, 2012.