Local Stabilization for a Class of Nonlinear Impulsive Switched Systems with Norm-Bounded Input: A Matrix Inequality Approach

Editorial

Authors

Electrical Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This paper investigates stabilization for a class of nonlinear impulsive switched systems with norm-bounded input constraint. Due to this constraint, it is only enough that the stabilization criteria and assumptions related to the nonlinearities be met on a subspace containing the origin. Certainly, these assumptions are such that they covers most of real-world systems. The purpose of this paper is to design a norm-bounded control that guarantees the exponential convergence of trajectories to a sufficient small ultimate bound in presence of uncertainties. Therefore, firstly, we present the stability criteria for a general model that ensures the convergence of all trajectories starting from a region of attraction to an ultimate bound. These conditions are in terms of a common Lyapunov function candidate and the minimum dwell-time, and it is enough to be valid on the region of attraction. Secondly, using the common quadratic Lyapunov function candidate and using the state-feedback approach, the established conditions are reformulated as a set of linear or bilinear matrix inequalities. Besides, to achieve the control parameters along with the largest convergence area and smallest ultimate bound, we propose an optimization problem. Finally, some illustrative examples are presented to demonstrate the proposed approach.

Keywords


[1]      W.M. Haddad, V. Chellaboina and S.G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, 2006.
[2]      J. Jiao, S. Cai and L. Chen, “Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems,” J. Appl. Math. Comput., vol. 53, no. 1-2, pp. 583–598, 2017.
[3]      M. Posa, M. Tobenkin and R. Tedrake, “Stability analysis and control of rigid-body systems with impacts and friction,” IEEE Trans. Automat. Contr., vol. 61, no. 6, pp. 1423–1437, 2015.
[4]      M. Barkhordari Yazdi, M.R. Jahed-Motlagh, S.A. Attia and J. Raisch, “Modal exact linearization of a class of second-order switched nonlinear systems,” Nonlinear Anal. Real World Appl., vol. 11, no. 4, pp. 2243–2252, 2010.
[5]      T. Fang and J. Sun, “Stability of complex-valued impulsive and switching system and application to the Lü system,” Nonlinear Anal. Hybrid Syst., vol. 14, pp. 38–46, 2014.
[6]      J. Li, R. Ma and G.M. Dimirovski, “Adaptive impulsive observers for a class of switched nonlinear systems with unknown parameter,” Asian J. Control., vol. 19, no. 3, pp. 1153–1163, 2017.
[7]      Y. Tian, Y. Cai, Y. Sun and H. Gao, “Finite-time stability for impulsive switched delay systems with nonlinear disturbances,” J. Franklin Inst., vol. 353, no. 14, pp. 3578–3594, 2016.
[8]      Y.-E. Wang, X.-M. Sun, W. Wang and J. Zhao, “Stability properties of switched nonlinear delay systems with synchronous or asynchronous switching,” Asian J. Control., vol. 17, no. 4, pp. 1187–1195, 2015.
[9]      نصراله اعظم بالغی و محمد حسین شفیعی، «تحلیل پایداری سیستم­های سوئیچ­شونده خطی گسسته­زمان با درنظرگرفتن تأخیر زمانی و عدم­قطعیت پارامترها»، مجله کنترل دانشگاه خواجه نصیرالدین طوسی، جلد 9، شماره 4، صفحه 77-85، 1394.
[10]      X. Zhao, P. Shi, Y. Yin and S.K. Nguang, “New results on stability of slowly switched systems: a multiple discontinuous lyapunov function approach,” IEEE Trans. Automat. Contr., vol. 62, no. 7, pp. 3502–3509, 2016.
[11]      W. Xiang and J. Xiao, “Stabilization of switched continuous-time systems with all modes unstable via dwell time switching,” Automatica, vol. 50, no. 3, pp. 940–945, 2014.
[12]      محمدرضا رمضانی آل، علی وحیدیان کامیاد و ناصر پریز، «کنترل بهینه سیستم­های سوئیچ­شونده خطی ناخودگردان: رهیافت نامساوی ماتریسی خطی»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 1، شماره پیاپی 27، صفحه 11-21 ، بهار 1393.
[13]      L. Gao and D. Wang, “Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching,” Nonlinear Anal. Hybrid Syst., vol. 20, pp. 55–71, 2016.
[14]      M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 475–482, 1998.
[15]      Hui Ye, A.N. Michel and Ling Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 461–474, 1998.
[16]      J. Hespanha, “Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle,” IEEE Trans. Automat. Contr., vol. 49, no. 4, pp. 470–482, 2004.
[17]      H. Lin and P.J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results,” IEEE Trans. Automat. Contr., vol. 54, no. 2, pp. 308–322, 2009.
[18]      F. Xu, L. Dong, D. Wang, X. Li and R. Rakkiyappan, “Globally exponential stability of nonlinear impulsive switched systems,” Math. Notes, vol. 97, no. 5-6, pp. 803–810, 2015.
[19]      H. Xu and K.L. Teo, “Exponential stability with L2-gain condition of nonlinear impulsive switched systems,” IEEE Trans. Automat. Contr., vol. 55, no. 10, pp. 2429–2433, 2010.
[20]      Y. Chen, S. Fei and K. Zhang, “Stabilization of impulsive switched linear systems with saturated control input,” Nonlinear Dyn., vol. 69, no. 3, pp. 793–804, 2012.
[21]      M.-L. Chiang and L.-C. Fu, “Robust output feedback stabilization of switched nonlinear systems with average dwell time,” Asian J. Control., vol. 16, no. 1, pp. 264–276, 2014.
[22]      B. Wang, H. Zhang, G. Wang, C. Dang and S. Zhong, “Asynchronous control of discrete-time impulsive switched systems with mode-dependent average dwell time,” ISA Trans., vol. 53, no. 2, pp. 367–372, 2014.
[23]      X. Zhao, L. Zhang, P. Shi and M. Liu, “Stability and stabilization of switched linear systems with mode-dependent average dwell time,” IEEE Trans. Automat. Contr., vol. 57, no. 7, pp. 1809–1815, 2012.
[24]      L. Lu and Z. Lin, “Design of switched linear systems in the presence of actuator saturation,” IEEE Trans. Automat. Contr., vol. 53, no. 6, pp. 1536–1542, 2008.
[25]      A. Benzaouia, O. Akhrif and L. Saydy, “Stabilisation and control synthesis of switching systems subject to actuator saturation,” Int. J. Syst. Sci., vol. 41, no. 4, pp. 397–409, 2010.
[26]      W. Ni and D. Cheng, “Control of switched linear systems with input saturation,” Int. J. Syst. Sci., vol. 41, no. 9, pp. 1057–1065, 2010.
[27]      A. Poznyak, A. Polyakov and V. Azhmyakov, Attractive Ellipsoids in Robust Control, Springer International Publishing, Cham, 2014.
[28]      M. Kocvara and M. Stingl, PENNON: Software for Linear and Nonlinear Matrix Inequalities, in: M.F. Anjos, J.B. Lasserre (Eds.), Handb. Semidefinite, Conic Polynomial Optim., Springer US, pp. 755–791, 2012.
[29]      Jin Lu and L.J. Brown, “A multiple Lyapunov functions approach for stability of switched systems,” in: Proc. 2010 Am. Control Conf., IEEE, pp. 3253–3256, 2010.
[30]      H. Yang, B. Jiang and J. Zhao, “On finite-time stability of cyclic switched nonlinear systems,” IEEE Trans. Automat. Contr., vol. 60, no. 8, pp.2201–2206, 2015.
[31]      K. Derinkuyu and M.Ç. Pınar, “On the S-procedure and some variants,” Math. Methods Oper. Res., vol. 64, no. 1, pp. 55–77, 2006.
[32]      L. V. Hien and V.N. Phat, “Exponential stabilization for a class of hybrid systems with mixed delays in state and control,” Nonlinear Anal. Hybrid Syst., vol. 3, no. 3, pp. 259–265, 2009.
[33]      الهه اسدیان و سعید بلوچیان، «کنترل مقاوم-تطبیقی مدل مرتبه کسری موتور سری جریان مستقیم»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، شماره پیاپی 81، صفحه 817-827، پاییز 1396.
[34]      General Electric company, “High-Torque DC Drilling Motor, Vertical Drilling Motor, GEK-91584D” GE752 datasheet, 2005, http://pdfstream.manualsonline.com/3/3b063b6b-2b86-424f-8cea-3d2ac288d1aa.pdf.