[1] W.M. Haddad, V. Chellaboina and S.G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, 2006.
[2] J. Jiao, S. Cai and L. Chen, “Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems,” J. Appl. Math. Comput., vol. 53, no. 1-2, pp. 583–598, 2017.
[3] M. Posa, M. Tobenkin and R. Tedrake, “Stability analysis and control of rigid-body systems with impacts and friction,” IEEE Trans. Automat. Contr., vol. 61, no. 6, pp. 1423–1437, 2015.
[4] M. Barkhordari Yazdi, M.R. Jahed-Motlagh, S.A. Attia and J. Raisch, “Modal exact linearization of a class of second-order switched nonlinear systems,” Nonlinear Anal. Real World Appl., vol. 11, no. 4, pp. 2243–2252, 2010.
[5] T. Fang and J. Sun, “Stability of complex-valued impulsive and switching system and application to the Lü system,” Nonlinear Anal. Hybrid Syst., vol. 14, pp. 38–46, 2014.
[6] J. Li, R. Ma and G.M. Dimirovski, “Adaptive impulsive observers for a class of switched nonlinear systems with unknown parameter,” Asian J. Control., vol. 19, no. 3, pp. 1153–1163, 2017.
[7] Y. Tian, Y. Cai, Y. Sun and H. Gao, “Finite-time stability for impulsive switched delay systems with nonlinear disturbances,” J. Franklin Inst., vol. 353, no. 14, pp. 3578–3594, 2016.
[8] Y.-E. Wang, X.-M. Sun, W. Wang and J. Zhao, “Stability properties of switched nonlinear delay systems with synchronous or asynchronous switching,” Asian J. Control., vol. 17, no. 4, pp. 1187–1195, 2015.
[9] نصراله اعظم بالغی و محمد حسین شفیعی، «تحلیل پایداری سیستمهای سوئیچشونده خطی گسستهزمان با درنظرگرفتن تأخیر زمانی و عدمقطعیت پارامترها»، مجله کنترل دانشگاه خواجه نصیرالدین طوسی، جلد 9، شماره 4، صفحه 77-85، 1394.
[10] X. Zhao, P. Shi, Y. Yin and S.K. Nguang, “New results on stability of slowly switched systems: a multiple discontinuous lyapunov function approach,” IEEE Trans. Automat. Contr., vol. 62, no. 7, pp. 3502–3509, 2016.
[11] W. Xiang and J. Xiao, “Stabilization of switched continuous-time systems with all modes unstable via dwell time switching,” Automatica, vol. 50, no. 3, pp. 940–945, 2014.
[12] محمدرضا رمضانی آل، علی وحیدیان کامیاد و ناصر پریز، «کنترل بهینه سیستمهای سوئیچشونده خطی ناخودگردان: رهیافت نامساوی ماتریسی خطی»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 1، شماره پیاپی 27، صفحه 11-21 ، بهار 1393.
[13] L. Gao and D. Wang, “Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching,” Nonlinear Anal. Hybrid Syst., vol. 20, pp. 55–71, 2016.
[14] M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 475–482, 1998.
[15] Hui Ye, A.N. Michel and Ling Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 461–474, 1998.
[16] J. Hespanha, “Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle,” IEEE Trans. Automat. Contr., vol. 49, no. 4, pp. 470–482, 2004.
[17] H. Lin and P.J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results,” IEEE Trans. Automat. Contr., vol. 54, no. 2, pp. 308–322, 2009.
[18] F. Xu, L. Dong, D. Wang, X. Li and R. Rakkiyappan, “Globally exponential stability of nonlinear impulsive switched systems,” Math. Notes, vol. 97, no. 5-6, pp. 803–810, 2015.
[19] H. Xu and K.L. Teo, “Exponential stability with L2-gain condition of nonlinear impulsive switched systems,” IEEE Trans. Automat. Contr., vol. 55, no. 10, pp. 2429–2433, 2010.
[20] Y. Chen, S. Fei and K. Zhang, “Stabilization of impulsive switched linear systems with saturated control input,” Nonlinear Dyn., vol. 69, no. 3, pp. 793–804, 2012.
[21] M.-L. Chiang and L.-C. Fu, “Robust output feedback stabilization of switched nonlinear systems with average dwell time,” Asian J. Control., vol. 16, no. 1, pp. 264–276, 2014.
[22] B. Wang, H. Zhang, G. Wang, C. Dang and S. Zhong, “Asynchronous control of discrete-time impulsive switched systems with mode-dependent average dwell time,” ISA Trans., vol. 53, no. 2, pp. 367–372, 2014.
[23] X. Zhao, L. Zhang, P. Shi and M. Liu, “Stability and stabilization of switched linear systems with mode-dependent average dwell time,” IEEE Trans. Automat. Contr., vol. 57, no. 7, pp. 1809–1815, 2012.
[24] L. Lu and Z. Lin, “Design of switched linear systems in the presence of actuator saturation,” IEEE Trans. Automat. Contr., vol. 53, no. 6, pp. 1536–1542, 2008.
[25] A. Benzaouia, O. Akhrif and L. Saydy, “Stabilisation and control synthesis of switching systems subject to actuator saturation,” Int. J. Syst. Sci., vol. 41, no. 4, pp. 397–409, 2010.
[26] W. Ni and D. Cheng, “Control of switched linear systems with input saturation,” Int. J. Syst. Sci., vol. 41, no. 9, pp. 1057–1065, 2010.
[27] A. Poznyak, A. Polyakov and V. Azhmyakov, Attractive Ellipsoids in Robust Control, Springer International Publishing, Cham, 2014.
[28] M. Kocvara and M. Stingl, PENNON: Software for Linear and Nonlinear Matrix Inequalities, in: M.F. Anjos, J.B. Lasserre (Eds.), Handb. Semidefinite, Conic Polynomial Optim., Springer US, pp. 755–791, 2012.
[29] Jin Lu and L.J. Brown, “A multiple Lyapunov functions approach for stability of switched systems,” in: Proc. 2010 Am. Control Conf., IEEE, pp. 3253–3256, 2010.
[30] H. Yang, B. Jiang and J. Zhao, “On finite-time stability of cyclic switched nonlinear systems,” IEEE Trans. Automat. Contr., vol. 60, no. 8, pp.2201–2206, 2015.
[31] K. Derinkuyu and M.Ç. Pınar, “On the S-procedure and some variants,” Math. Methods Oper. Res., vol. 64, no. 1, pp. 55–77, 2006.
[32] L. V. Hien and V.N. Phat, “Exponential stabilization for a class of hybrid systems with mixed delays in state and control,” Nonlinear Anal. Hybrid Syst., vol. 3, no. 3, pp. 259–265, 2009.
[33] الهه اسدیان و سعید بلوچیان، «کنترل مقاوم-تطبیقی مدل مرتبه کسری موتور سری جریان مستقیم»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، شماره پیاپی 81، صفحه 817-827، پاییز 1396.
[34] General Electric company, “High-Torque DC Drilling Motor, Vertical Drilling Motor, GEK-91584D” GE752 datasheet, 2005, http://pdfstream.manualsonline.com/3/3b063b6b-2b86-424f-8cea-3d2ac288d1aa.pdf.