Design of Networked Discrete Predictive Sliding Mode Stabilizer for Damping Low Frequency Oscillations in Geographically Distributed Power Systems

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

The rapid growth of technological advances and communication technologies, and also the development and geographical dispersion of industrial processes have made the use of networked control systems in controlling geographically distributed systems inevitable. In these systems, communication between controlling components is established through a telecommunications network, due to non-ideal communication network conditions, some problems such as packet dropouts and time delays are raised as inherent problems of these systems, which can lead to inappropriate performance and even the entire system becomes unstable. In this paper, a new networked discrete predictive sliding mode control structure is proposed in order to stabilize low frequency oscillations in smart grid with geographically distributed network. The proposed method consists of two steps. First a new sliding mode switching function is proposed to design a sliding mode stabilizer and then, a predictive control algorithm is proposed to compensate the non-ideal behavior of the communication network, including network latency and packet loss. In order to demonstrate the capability of the proposed method, some numerical studies have been carried out on a 5-area -16-machine system in the presence of three-phase and single-phase faults. Also, in order to make a comparison, a conventional networked stabilizer with lead-lag structure is designed. Simulation results show the capability and superiority of the proposed method.

Keywords


[1]      Y. Tipsuwan, M. Chow, “Control methodologies in networked control systems,” Control Engineering Practice, vol. 11, no. 10, pp.1099–1111, 2003.
[2]      E. Bijami; J. Askari; M. M. Farsangi, “Design of stabilising signals for power system damping using generalised predictive control optimised by a new hybrid shuffled frog leaping algorithm”, IET Generation, Transmission & Distribution, vol. 6, no. 10, pp. 1036 – 1045, 2012.
[3]      M. Yigit, V. C.Gungor, G. Tuna, M. Rangoussi, E. Fadel, “Power line communication technologies for smart grid applications: a review of advances and challenges”, Computer Networks, vol. 70, pp. 366–383, 2014.
[4]      محسن بحرینی، طاهره بینازاده، ملیحه مغفوری فرسنگی و جعفر زارعی، «پایدارسازی تصادفی زمان-محدود توسط فیدبک خروجی برای سیستم کنترل تحت‌شبکه با رویکرد سیستم‌های پرش مارکوف»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحات 25-35، 1395.
[5]      سعید اباذری، مجتبی برخورداری یزدی و عباس عرب دردری، «طراحی کنترل‌کننده مقاوم SVC مبتنی‌بر WAMS با در نظر گرفتن نامعینی تأخیر زمانی سیگنال‌های راه دور»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحات 1-12، 1394.
[6]      سعید تیمورزاده، فرخ امینی‌فر و مجید صنایع‌پسند، «میراسازی نوسانات بین ناحیه‌ای: طرح گسترده هماهنگی حذف بار و تولید مبتنی‌بر منطق فازی »، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 39-48، 1396.
[7]      S. Wang, X. Meng, T. Chen,  ‘Wide-Area control of power systems through delayed network communication’, IEEE Transactions on Control Systems Technology, vol. 20, no. 2, pp. 495 – 503, 2012.
[8]      A. K. Singh, R.Singh, B. C. Pal, ‘Stability analysis of networked control in smart grids’, IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 381 – 390, 2015
[9]      H. Wu,  K. S. Tsakalis, G. T. Heydt, “Evaluation of time delay effects to wide-area power system stabilizer design, IEEE Transaction on Power Systems, vol. 19, no. 4, pp. 1935-1941, 2004.
[10]      W. Yao, L. Jiang, J. Wen, Q. H. Wu, S. Cheng, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays, IEEE Transaction on Power Systems, vol. 29, no. 1, pp. 318-329, 2014.
[11]      L. Cheng, G. Chen, W. Gao, F. Zhang, ‘Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer’, IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2957- 2966, 2014.
[12]      J. Li, Z. Chen, D. Cai, W. Zhen, Q. Huang, “Delay-dependent stability control for power system with multiple time-delays”, IEEE Transaction on Power Systems, vol. 31, no. 3, pp. 2316-2326, 2016.
[13]      V. Vesely, T. N. Quang, “Robust power system stabilizer via networked control system”, Journal of Electrical Engineering, vol. 62, no. 5, pp. 286–291, 2011.
[14]      W. Yao, L. Jiang, J. Wen, Q. Wu, S. Cheng, “Wide-area damping controller for power system interarea oscillations: A networked predictive control approach”, IEEE Transaction on Control Systems Technology, vol. 23, no. 1, pp. 27-36, 2017.
[15]      W. Yao, L. Jiang, Q. H. Wu, J. Y. Wen, S. J. Cheng, “Design of Wide-Area Damping Controllers Based on Networked Predictive Control Considering Communication Delays”, IEEE Power and Energy Society General Meeting, pp. 1-8, 2010.
[16]      W. Yao, L. Jiang, J. Y. Wen, S. J. Cheng, Q. H. Wu, “Networked predictive control based wide-area supplementary damping controller of SVC with communication delays compensation”, IEEE Power and Energy Society General Meeting (PES), pp. 1-5, 2013.
[17]      M. Mokhtari, F. Aminifar, D. Nazarpour, S. Golshannavaz, “Wide-Area power oscillation damping with a fuzzy controller compensating the continuous communication delays”, IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1997 – 2005, 2013.
[18]      J. Liu, A. Gusrialdi, S. Hirche, A. Monti, “Joint controller-communication topology design for distributed wide-area damping control of power systems”, Proceedings of the 18th world congress the international federation of automatic control, pp. 519-525, 2011
[19]      S.T Jin, ‘On model free learning adaptive control and application’, Ph.D. dissertation, Beijing Jiaotong University, Beijing, 2008.
[20]      W. Gao, Y. Wang, A. Homaifa, “Discrete-time variable structure control systems”, IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117–122, 1995.
[21]      Y.C. Feng, D.L. Shi, “Model free adaptive predictive control for main stream pressure system of power plant”, Energy Procedia, International Conference on Future Electrical Power and Energy Systems, vol. 17, pp. 1682 -1688, 2012.
[22]      J. Chow, “Power System Toolbox: A Set of Coordinated m-Files for Use with MATLAB”, ON, Canada: Cherry Tree Scientific Software, 1997.
[23]      M. Khaleghi, M. M. Farsangi, H. Nezamabadi-Pour, K.Y. Lee, “Pareto-optimal design of damping controllers using modified artificial immune algorithm”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 2, pp. 240-250, 2011.
[24]      M. M. Farsangi, Y. H. Song, K.Y. Lee, “Choice of FACTS device control inputs for damping interarea oscillations”, IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1135-1143, 2004..
[25]      M. M Farsangi, H. Nezamabadi-pour, Y. H. Song, K. Y. Lee, “Placement of SVCs and selection of stabilizing signals in power systems”, IEEE Transactions on Power Systems, vol. 22, no. 3, pp.1061-1071, 2007.