Water Saving in Electricity Generation System: Potential and Cost

Document Type : Original Article

Authors

1 EE Department, Sharif University of Technology, Tehran, Iran

2 MAPNA Electric & Control, Engineering & Manufacturing, Karaj, Iran

3 Iran Grid Management Company, Tehran, Iran

Abstract

Power plants have noticeable share from underground water consumption. In order to make some water savings, different approaches such as replacing wet cooling towers and installing renewable energy sources have been proposed. These medium and long term approaches however need huge investments and may degrade performance of the system. This paper discusses generation system water consumption minimization as a short term solution. To do so, conventional economic dispatch problem is extended to a multi-objective problem where a linear combination of electricity generation cost and water consumption is minimized. The paper presents estimation procedure of water saving cost function in a generation system. Then, a test system is applied to determine potentials and costs of saving water in a generation system. Different studies are conducted and the results are presented. Finally, water saving cost function is estimated for the generation system. According to the results, some relevant conclusions are drawn.     

Keywords


[1] P. H. Gleick, “Water and energy,” Annual Review of Energy and the Environment, vol. 19, pp. 267-299, 1994.
[2] K. Averyt, J. Fisher, A. Huber-Lee, A. Lewis, J. Macknick, N. Madden, J. Rogers and S. Tellinghuisen, “Freshwater use by U.S. power plants: electricity's thirst for a precious resource”, A report of the Energy and Water in a Warming World initiativeRep. Union of Concerned Scientists, Cambridge, MA, 2011.
[3] T. J. Feeley, T. J. Skone, G. J. Stiegel, A. McNemar, M. Nemeth and B. Schimmoller, “Water: a critical resource in the thermoelectric power industry,” Energy, vol. 33, pp. 1-11, 2008.
[4] R. Mendelsohn, “Global warming and the American economy: a regional assessment of climate change impacts” Edward Elgar Publishing, 2001.
[5] P. Kirshen, M. Ruth and W. Anderson, “Interdependencies of urban climate change impacts and adaptation strategies: a case study of Metropolitan Boston USA,” Climatic Change, vol. 86, pp. 105-122, 2008.
[6] H. Koch and S. Vögele, “Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change,” Ecological Economics, vol. 68, pp. 2031-2039, 2009.
[7] V. Fthenakis and H. C. Kim, “Life-cycle uses of water in US electricity generation,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 2039-2048, 2010.
[8] H. Koch and S. Vögele, “Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change,” Ecological Economics, vol. 68, pp. 2031-2039, 2009.
[9] عباس ربیعی و مرتضی محمدی، «پخش بار بهینه احتمالی مقید به پایداری گذرا: رهیافت برنامه‌ریزی تصادفی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، بهار 1395.
[10] فرید محمدی، حمدی عبدی و احسان دهنوی، «حل مسئله توزیع بار اقتصادی هزینه-آلودگی دینامیک همراه با برنامه پاسخ‌گویی بار اضطراری بهینه تحت قیود اثر نقطه-دریچه و ذخیره چرخان»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، بهار 1395.
[11] J. Barcel, E. Codina, J. Casas, J. L. Ferrer and D. Garca, “A review of operational water consumption and withdrawal factors for electricity generating technologies,” NREL, Golden, CO, USA, Tech. Rep. NREL/ TP-6A20-5090, 2011.
[12] J. Macknick, R. Newmark, G. Heath and K. C. Hallett, “Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature,” Environmental Research Letters, vol. 7, no. 4, p. 045802, 2012.
[13] P. Torcellini, N. Long and R. Judkoff, “Consumptive water use for U.S. power production,” Natl. Renew. Energy Lab., Golden, CO, USA, Tech. Rep., 2003.
[14] M. J. Rutberg, Modeling Water use at Thermoelectric Power Plants, M.S. thesis, Mass. Inst. Technol., Cambridge, MA, USA, 2012.
[15] A. Delgado and H. J. Herzog, “A simple model to help understand water use at power plants,” Massachusetts Institute of Technology, Cambridge, MA, 2012.
[16] J. Macknick, R. Newmark, G. Heath and K. Hallett, “A review of operational water consumption and withdrawal factors for electricity generating technologies,” Contract, vol. 303, pp. 275-3000, 2011.
[17] M. V. Hoeven, World Energy Outlook 2012, Paris: International Energy Agency, 2012.
[18] L. Honorio, Efficiency in Electricity Generation, Union of the Electricity Industry – EURELECTRIC, VGB, 2003.