Vector Quantization Using a Modified Firefly Algorithm for Image Compression

Document Type : Original Article

Authors

1 Department of Computer Engineering, Science and Art University, Yazd, Iran

2 Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran

Abstract

Vector Quantization (VQ) is the powerful technique in image compression. Generating a good codebook is an important part of VQ. There are various algorithms in order to generate an optimal codebook. Recently, Swarm Intelligence (SI) algorithms were adapted to obtain the near-global optimal codebook of VQ. In this paper, we proposed a new method based on a modified firefly algorithm (MFA) to construct the codebook of VQ. The proposed method merged genetic crossover operator with FA to develop the VQ. This method is called MFA model. Experimental results indicate that the reconstructed images generated by the proposed model is get higher quality than FA and it’s about one percent, but it is no significant superiority to the PSO algorithm. Furthermore, MFA is slower than FA.

Keywords


[1] C. C. Chang, Li, T. C., & Yeh, J. B., “Fast codebook search algorithms based on the tree-structured vector quantization,” Pattern Recognition Letters, vol. 27, pp. 1077–1086, 2006.
[2] T. S. Chen, & Chang, C. C., “Diagonal axes method (DAM): A fast search algorithm for vector quantization,” IEEE Transactions on Circuit System and Video Technology, vol. 7, pp. 555-559, 1997.
[3] M. H. Horng, “Vector quantization using the firefly algorithm for image compression,” Expert Systems with Applications, vol. 39, pp. 1078-1091, 2012.
[4] K. Sayood, Data Compression. Nebraska: Morgan Kaufmann is an Imprint of Elsevier, 2006.
[5] M. Rehman, M. Sharif, and M. Raza, “Image compression: a survey,” Engineering and Technology, vol. 7, pp. 656-672, 2014.
[6] H. B. Kekre, M. Tanjua, and K. Sarode, “Vector quantized codebook optimization using k-means,” International Journal on Computer Science and Engineering, vol. 3, pp. 283-290, 2009.
[7] S. A. Salman, “Image compression using vector quantization and genetic algorithms,” Anbar Journal for Engineering Sciences, vol. 1, pp. 45-58, 2007.
[8] P. Fränti, “Genetic algorithm with deterministic crossover for vector quantization,” Pattern Recognition Letters, vol. 21, pp. 61-68, 2000.
[9] H. M. Feng, C. Y. Chen, and F. Ye, “Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression,” Expert Systems with Applications, vol. 32, pp. 213-222, 2007.
[10] M. Kumar, R. Kapoor, and T. Goel, “Vector quantization based on self-adaptive particle swarm optimization,” International Journal of Nonlinear Science, vol. 9, pp. 311-319, 2010.
[11] مؤمنی, آقاصرام؛ شاکر و جمالی، «ارائه یک فیلتر جدید برای حذف نویزهای ضرب‌های و ترکیب فیلتر پیشنهادی با الگوریتم PSO به‌منظور کشف و دفاع در برابر حملات سیل‌آسای SYN»، فصلنامه مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحات 319-311، ۱۳۹۵.
[12] نقش‌بندی و شمس، «پخش بار بهینه مقید به پایداری سیگنال کوچک»، فصلنامه مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 950-939، 1395.
[13] K. Chiranjeevi, U. R. Jena, B. M. Krishna, and J. Kumar, “Modified firefly algorithm (MFA) based vector quantization for image compression,” in Computational Intelligence in Data Mining, Volume 2, ed: Springer, 2016, pp. 373-382.
[14] K. Chiranjeevi, U. Jena, and S. Dash, “Comparative performance analysis of optimization techniques on vector quantization for image compression,” International Journal of Computer Vision and Image Processing (IJCVIP), vol. 7, pp. 19-43, 2017.
[15] V. Severo, H. Leitão, J. Lima, W. Lopes, and F. Madeiro, “Modified firefly algorithm applied to image vector quantisation codebook design,” International Journal of Innovative Computing and Applications, vol. 7, pp. 202-213, 2016.
[16] C. Karri and U. Jena, “Fast vector quantization using a bat algorithm for image compression,” Engineering Science and Technology, an International Journal, vol. 19, pp. 769-781, 2016.
[17] X. S. Yang, “Firefly algorithms for multimodal optimization,” In Stochastic Algorithms: Foundation and Applications, Lecture Notes in Computer Science, vol. 5792, pp. 169-178, 2009.
[18] حسن‌زاده، طاهره و میبدی، محمدرضا، «الگوریتم کرم شب‌تاب با رویکرد همکارانه»، هفدهمین کنفرانس ملی سالانه انجمن کامپیوتر ایران، انجمن کامپیوتر ایران، دانشگاه صنعتی شریف، 17-12، 1390.
[19] کامران پور، مرضیه؛ دکتر مهدی یعقوبی و دکتر پیمان کشاورزیان، «ایجاد یک الگوریتم ممتیک مبتنی بر الگوریتم کرم شب‌تاب و تئوری آشوب»، یازدهمین کنفرانس سراسری سیستم‌های هوشمند، انجمن سیستم‌های هوشمند ایران، دانشگاه خوارزمی، 7-1، 1390.