Improved Multiband-Structured Subband Adaptive Filter Algorithm in Diffusion Distributed Networks

Document Type : Original Article

Authors

Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

Adaptive algorithms play an important role in order to improve performance of diffusion distributed network. In comparison of diffusion Normalized least mean square algorithm, family of diffusion subband algorithms have faster convergence rate when the input signal is highly correlated. This paper solves the problem of distributed estimation in the diffusion networks based on improved multiband-structured subband adaptive filter (IMSAF) and diffusion improved multiband structured subband adaptive filter (DIMSAF) is established. In proposed algorithm, convergence behavior improved due to using several input projections instead of single vector of input data. In addition, when the projection order is increased, the convergence rate of the proposed algorithm improves. The validity of the DIMSAF in comparison of DLMS, DAPA, VSS-DAPA and DRLS algorithms is demonstrated by several computer simulations. The results show fastest convergence rate.

Keywords


[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, pp. 102-114, 2002.
[2] A. H. Sayed and C. G. Lopez. “Adaptive processing over distributed networks,” 9th International Symposium on Signal Processing and Its Applications (ISSPA), Sharjah, United Arab Emirates, February 2007.
[3] D. Li, K. D. Wong, Y. H. Hu and A. M. Sayeed, “Detection, classification, and tracking of targets,” IEEE Signal Processing Magazine, vol. 19, pp. 17-29, 2002.
[4] C. G. Lopes, and A. H. Sayed, “Incremental adaptive strategies over distributed networks,” IEEE Trans. Signal Processing, vol. 55, pp. 4064-4077, 2007.
[5] P. Di Lorenzo, S. Barbarossa and A. H. Sayed, “Bio-inspired swarming for dynamic radio access based on diffusion adaptation,” inProc. Eur. Signal Process.Conf.(EUSIPCO), pp. 402–406, Barcelona, Spain, August 2011.
[6] J. Chen, X. Cao, P. Cheng, Y. Xiao and Y. Sun, “Distributed collaborative control for industrial automation with wireless sensor and actuator networks,” IEEE Trans. Ind. Electron, vol. 57, no. 12, pp. 4219–4230, 2010.
[7] M. de Courville and P. Duhamel, “Adaptive filtering in subbands using a weighted criterion,” IEEE Trans. Signal Processing, vol. 46, pp. 2359-2371, September 1998.
[8] S. S. Pradhan and V. E. Reddy, “A new approach to subband adaptive filtering,”IEEE Trans. Signal Processing, vol. 47, pp. 655–664, March 1999.
[9] J. J. Shynk, “Frequency domain and multi rate adaptive filtering,” IEEE Signal Processing Mag, vol. 9, pp. 14–37, January 1992.
[10] A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with critical sampling: Analysis, experiments, and application to acoustic echo cancellation,” IEEE Trans. Signal Processing, vol. 40, pp. 1862–1875, August 1992.
[11] P. L. De Leon and D. M. Etter, “Acoustic echo cancellation using subband adaptive filtering,” in Subband and Wavelet Transforms, A. N. Akansu and M. J. T. Smith, Eds. Boston, MA: Kluwer, 1996.
[12] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall, 4th edition, 2002.
[13] F. Yang, M. Wu, P. Ji and J. Yang, “An Improved Multiband-Structured Subband Adaptive Filter Algorithm,” IEEE Signal Process. Lett, vol. 19, no. 10, pp. 647–650, October 2012.
[14] A. H. Sayed. In: Chellapa R, Theodoridis S, eds. Diffusion Adaptation Over Networks, Academic Press Library in Signal Processing, vol. 3: Academic Press, Elsevier; 2014:323-454.
[15] A. H. Sayed, Adaptation, Learning, and Optimization Over Networks, Foundations and Trends in Machine Learning, vol. 7, no. 4-5; NOW Publishers Inc. Boston - Delft ; 2014: 311-801.
[16] A. H. Sayed, S.Y. Tu, J. Chen, X. Zhao and Z. J. Towfic, “Diffusion strategies for adaptation and learning over networks,” IEEE Signal Process Mag, vol. 30, no. 3, pp. 155-171, May 2013.
[17] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4, pp. 460-497, April 2014.
[18] N. Takahashi, I .Yamada and A. H. Sayed, “Diffusion least-mean squares with adaptive combiners: formulation and performance analysis,”IEEE T Signal Proces, vol. 58, no. 9, pp. 4795-4810, September 2010.
[19] J. B. Predd, S. R. Kulkarni and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Process Mag, vol. 23, no. 4, pp. 56-69, July 2006.
[20] C. G. Lopes and A. H. Sayed. “Diffusion least-mean squares over adaptive networks: formulation and performance analysis,” IEEE T Signal Proces, vol. 56, no. 7, pp. 3122-3136, July 2008.
[21] P. Braca, S. Marano and V. Matta, “Running consensus in wireless sensor networks,” In Proc. 11th International  Conference  on Information Fusion, pages 1–6, Cologne, Germany, June 2008.
[22] A. H. Sayed, “Diffusion adaptation over networks,” to appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, editors, Elsevier, 2013.
[23] V. D. Blondel, J. M. Hendrickx, A. Olshevsky and J. N. Tsitsiklis, “Convergence in multiagent coordination,‌ consensus, and flocking,”  Proc. Joint 44th  IEEE Conf. on Decision  and  Control  and European Control Conf.‌ (CDC-ECC), pp. 2996-3000, Seville, Spain, December 2005.
[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and  E. Teller, “Equations of  state  calculations‌ by  fast  computing  machines,” Journal  of  Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.
[25] M. de Courville and P. Duhamel, “Adaptive filtering in subbands using a weighted criterion,” IEEE Trans. Signal Processing, vol. 46, no. 9, pp. 2359-2371, September1998.
[26] K. A. Lee and W. S. Gan, “Improving convergence of the NLMS algorithm using constrained subband updates,” IEEE Signal Process. Lett., vol. 11, no. 9, pp. 736–739, September 2004.
[27] H. S. Lee, S. E. Kim, J. W. Lee and W. J. Song, “A Variable Step-Size Diffusion LMS Algorithm for Distributed Estimation,” IEEE Trans. Signal Processing, vol. 63, no. 7, pp 1808-1820 April 2015.
[28] H. Malvar, Signal Processing with Lapped Transforms. Artech House, 1992.
[29] امیر رستگارنیا، اعظم خلیلی و توحید یوسفی رضایی، «الگوریتم مبتنی بر شبکه تطبیقی نفوذی برای تخمین مقاوم میدان اسکالر در شبکه‌های سنسوری بی‌سیم»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحات 535-527، 1396.
[30] مرتضی فرهید، موسی شمسی و محمدحسین صداقی، «تأثیر توپولوژی شبکه‌های پیچیده بر روی عملکرد تخمین تطبیقی توزیع‌شده  با مشارکت نفوذی»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 4، صفحات 216-207، 1395.
[31] قنبر آذرنیا، محمد علی طینتی، «افزایش همگرایی شبکه‌های تطبیقی با لینک‌های نویزی: الگوریتم حداقل میانگین مربعات توزیع‌شده افزایشی طول متغیر»، مجله مهندسی برق دانشگاه تبریز، دوره 45، شماره 3، صفحات 15-1، 1394.
[32] H. C. Shin, A. H. Sayed and W. J. Song, “Variable Step-Size NLMS and Affine Projection Algorithms,” IEEE Signal Process. Lett, vol. 11, no. 2, pp. 132–135, February 2004.
[33] F. S. Cattivelli, C. G. Lopes and A. H. Sayed, “Diffusion recursive  least-squares for distributed estimation over adaptive networks,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1865-1877, May 2008.