Fractional Order Dynamic Sliding Mode Controller Design for Triaxial Gyroscope based on Backstepping Method

Document Type : Original Article

Authors

Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this paper, a dynamic sliding mode controller with fractional order sliding surface based on backstepping algorithm is designed and presented for controlling performance of a micro-electro-mechanical triaxial gyroscope. To compensate uncertainties and incoming disturbances to the system, a sliding mode controller is used. In order to increase the degree of freedom and further robustness of the controller, the sliding surface is selected as fractional order form. Using dynamic sliding mode controller in addition to the increasing the performance of controller, cause to reduce the chattering phenomenon in the input control signal. Using the backstepping approach as a very powerful design tool for nonlinear systems, makes the designed controller more robust against incoming disturbances to the system. Asymptotic stability of the closed loop system will be proven by Lyapunov stability theorem. At the end of the design, in order to efficacious reduce the chattering phenomenon in the control signal, fuzzy control theory for control the boundary layer and also adaptive method for online estimating the upper bound of uncertainty are used. In order to evaluate performance of the designed controller, this controller is compared with two other sliding mode controllers. Simulation results show that the proposed controller have a much less chattering phenomenon in control signal, increasing system stability, reducing the rise time and better tracking.

Keywords


[1] محمد نوابی و سینا سلیمانپور، «کنترل گام به عقب استاندارد و مقاوم فضاپیما در حضور عدم قطعیت در ماتریس اینرسی»، مجله مهندسی مکانیک مدرس، دوره 14 شماره 16، صفحه 112-124، زمستان 1393.
[2] Y. Fang, J. Fei, Y. Yang and M. Hua, “Adaptive control of MEMS gyroscope using back-stepping approach,” Proceeding of The 14th IEEE International Conference on Control, Automation and Systems (ICCAS), pp. 361-366, October, 2014.
[3] T. K. Roy, M. A. Mahmud, W. Shen, A. M. T. Oo and M. E. Haque, “Robust nonlinear adaptive backstepping excitation controller design for rejecting external disturbances in multimachine power systems,” International Journal of Electrical Power & Energy Systems, vol. 84, pp.76-86, 2017.
[4] S.B.F. Asl. and S.S. Moosapour, “Adaptive backstepping fast terminal sliding mode controller design for ducted fan engine of thrust-vectored aircraft,” Aerospace Science and Technology, vol. 71, pp. 521-529, 2017.
[5] C. Batur, T. Sreeramreddy and Q. Khasawneh, “Sliding mode control of a simulated MEMS gyroscope,” ISA transactions, vol. 45, no. 1, pp. 99-108, 2006.
[6] J. Fei, W. Yan and Y. Yang, “Adaptive nonsingular terminal sliding mode control of MEMS gyroscope based on backstepping design,” International Journal of Adaptive Control and Signal Processing, vol. 29, no. 9, pp. 1099-1115, 2015.
[7] J. Guldner and V. Utkin, “The chattering problem in sliding mode systems,” proceeding of the 2006 International Workshop on Variable Structure System, pp. 346-350, 2006.
[8] N. M. Dehkordi, N. Sadati, and M. Hamzeh, “A backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads,” Control Engineering Practice, vol. 58, pp.150-160, 2017.
[9] J. Fei, and Z. Yuan, “Dynamic sliding mode control of MEMS gyroscope,” IEEE International Conference on Control Applications (CCA), pp. 437-442, August, 2013.
[10] Z. Ma, G. Sun, and Z. Li, “Dynamic adaptive saturated sliding mode control for deployment of tethered satellite system,” Aerospace Science and Technology, vol. 66, pp.355-365. 2017.
[11]  S. Y. Chen and S. S. Gong, “Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control,” Mechanical Systems and Signal Processing, vol. 94 pp.111-128, 2017.
[12] H. Sira-Ramirez, and O. Llanes-Santiago, “Adaptive dynamical sliding mode control via back-stepping,” Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1422-1427, December, 1993.
[13] H. F. Ghavidel, A. A. Kalat, “Observer-based robust composite adaptive fuzzy control by uncertainty estimation for a class of nonlinear systems,” Neurocomputing, vol. 230, no. 22, pp. 135–143, 2017.
[14] محسن وحدانی پور و مهدی خدابنده، «کنترل مد لغزشی مبتنی بر روش برگشت به عقب کوادروتور با حذف اثر اغتشاش بار و تخمین اینرسی به روش تطبیقی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 1396.
[15] محسن حسن‌پور ناصریه، سید محمدعلی محمدی و مجتبی برخورداری یزدی مهدی، «طراحی کنترل‌کننده تطبیقی-فازی برای دسته‌ای از سیستمهای غیرخطی پسخوردی غیراکید تأخیری با پسماند نامشخص»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، پاییز 1396.
[16] B. Zhang, Y. Pi, and Y. Luo, “Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor,” ISA transactions, vol. 51, no. 5, pp. 649-656, 2012.
[17] سید باقر فاضلی اصل و سید سجاد موسی‌پور، «کنترل مد لغزشی ترمینال سریع بازگشت‌به‌عقب مرتبه کسری برای ژیروسکوپ سه محوره میکروالکترومکانیکی»، مجله مهندسی مکانیک مدرس، دوره 17 شماره 5، صفحه 383-391، مرداد 1396.
[18] A. Nikkhah, S. Soheili, and M. Zare, “Development of a Simple Method for Control of Drive, Mode and Estimation of the Input Rotation Rate in MEMS Vibratory Gyroscope,” Journal of Aerospace Mechanic, pp. 15-23, 2014.
[19] J. Fei, Y. Yang and D. Wu, “Robust RBF neural network control with adaptive sliding mode compensator for MEMS gyroscope,” Proceeding of 12th IEEE/ACIS International Conference on Computer and Information Science (ICIS), pp. 449-454, 2013.
[20] J. Fei, M. Xin, and W. Dai, “Adaptive backstepping sliding mode control for MEMS gyroscope,” Proceeding of The 13th IEEE International Conference on Control, Automation and Systems (lCCAS), Kimdaejung Convention Center, Gwangju, Korea, Oct. 20-23, pp. 40-45, 2013.
[21] M. P. Aghababa, “Synchronization and stabilization of fractional second-order nonlinear complex systems” Nonlinear Dynamics, vol. 80, pp.1731-1744, 2015.
[22] K. S. Miller and B. Ross, “An introduction to the fractional calculus and fractional differential equations,” A Wiley-Interscience Publication, San Fransisco, USA, 1993.
[23] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198, Academic press, 1998. 
[24] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science & Business Media, 2011.
[25] Y. Tang, X. Zhang, D. Zhang, G. Zhao and X. Guan, “Fractional order sliding mode controller design for antilock braking systems,” Neuro computing, vol. 111, pp. 122-130, 2013.
[26] J. Liu and X. Wang, Advanced sliding mode control for mechanical systems: design, analysis and MATLAB simulation, Springer Science & Business Media, 2012.
[27] C. Batur, T. Sreeramreddy and Q. Khasawneh, “Sliding mode control of a simulated MEMS gyroscope,” ISA transactions, vol. 45, pp.99-108, 2006.