Presentation of an Applicable Method for Characterization of Electromagnetic Parameters of Ferrite Materials at Ku Band

Document Type : Original Article

Authors

Electrical and Electronic Department, Malek Ashtar University of Technology, Tehran, Iran

Abstract

Since validation of the electromagnetic parameters of manufactured or purchesed ferrite materials is the first step in designing and implementation of the diffrent ferrite-based devices in communication systems, ferrite characterization is verry important. in this paper an algorithm is simulated and implemented which is based on the minimization of an objective function. the objective function's parameters are the reflection and transmission coefficients of the ferrite in a rectangular wave guide.in compairsion with other works proposed method only needs to the amplitude of the reflection and transmission coefficients to estimate the parameters of ferrite materials. This makes the implementation easy and eliminates the problems associated with phase calibration and sensitivity. The proposed method is simulated for a nickel ferrite and experimentally tested on SL-470 ferrite sample and the results have been compared with the manufacturer's catalog.

Keywords


[1] D. M. Pozar, Microwave Engineering: Third Edition, John Wiley & Sons Inc, Hoboken, NJ, 2005.
[2] زهرا حبیبی، مرتضی کازرونی، سید حسین محسنی ارمکی و عماد حمیدی، «ارائه یک روش کاربردی جهت کالیبراسیون آنتنهای آرایه فازی»، مجله مهندسی برق دانشگاه تبریز، دوره 45، شماره 4، صفحات 84-79، زمستان 1394.
[3] Shiban. K, and Bharathi Bhat, Microwave and millimeter wave phase shifters. Vol. 1. Boston and London: Artech House, 1991.
[4] D. K. Ghodgaonkar, V. Varadan, and V. K. Varadan, “Free space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas., vol. 39, no. 2, pp. 387–394, Apr 1990.
[5] L. Chen, C. K. Ong, and B. T. G. Tan, “Cavity perturbation technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics,” IEEE Trans. Instrum. Meas., vol. 48, no. 6, pp.1023–1030, Dec 1999
[6] N. Maode, S. Yong, U. Jinkui, F. Chenpeng, and X. Deming, “An improved open-ended waveguide measurement technique on parameters r and µr of high-loss materials,” IEEE Trans. Instrum. Meas., vol. 47, no. 2, Apr 1999.
[7] B. Crowgey, O. Tuncer, J. Tang, E. J. Rothwell, B. Shanker, L. C. Kempel, and M. J. Havrilla, “Characterization of biaxial anisotropic material using a reduced aperture waveguide,” IEEE Trans. Instrum. Meas., Vol. 62, No. 10, 2739–2750, 2013.
[8] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans Microw. Theory Tech., vol. 38, no. 8, Aug 1990.
[9] W. Barry, “A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability,” IEEE Trans. Microw. Theory Tech., vol. MTT-34, no. 1, pp. 80–84, Jan 1986.
[10] J. Uhfer and F. Arndt, “Field Theory Design of Ferrite Loaded Waveguide Nonreciprocal Phase Shifters with Multisection Ferrite or Dielectric Slab Impedance Transformers”, IEEE Trans. Microw. Theory Tech., vol. MTT-35, no. 6, pp. 552-560, June 1987.
[11] Dorey, S. P., M. J. Havrilla, L. L. Frasch, C. Choi, and E. J. Rothwell, “Stepped-waveguide materialcharacterization technique,” IEEE Antennas Propag. Mag., Vol. 46, No. 1, 170–175, 2004.
[12] N. Belhadj-Tahar, A. Fourrier-Lamer, and H. de Chanterac, “Broadband simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 1, pp. 1–7, Jan 1990.
[13] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, vol. 62, no. 1, pp. 33–36, Jan 1974.
[14] Tae-Wan Kim, Byeong-Yong Park, Seung-Young Park,” Calculation of Magnetization and Permeability Tensor of a Partially Magnetized Cylindrical Ferrite Resonator”, IEEE Magnetics Letters,Volume: 7, Feb 2016.
[15] J.R.Bray and L.Roy, "Development of a millimeter wave ferrite filled antisymmetrically biased rectangular waveguide phase shifter embedded in low-temperature cofired ceramic," IEEE Trans.Microw.Theory Tech.,vol. 52, no. 7, pp.1732-1739,July 2004.
[16] M R. A. Fenner, E. J. Rothwell, and L. Frasch, “A comprehensive analysis of freespace and guidedwave techniques for extracting the permeability and permittivity of materials using reflection-only measurements,” Radio Science, vol. 47, pp. 1004–1016, Jan 2013.
[17] ferrite-domen.com/images/pr8/pr8.pdf.