Classification of marine targets using two HRR radars


1 Faculty of Information Technology, University of Emam hossain, Tehran, Iran

2 Faculty of Engineering, University of Shiraz, Shiraz, Iran


In this article, a novel method based on measuring the number of range cells in detected range profiles has been introduced according to two different aspects by two same high range resolution radars. At first, using rectangular approximation and measurement of the length and width of marine targets, calculation of the number of range cells is used in detected range profiles. On the following, according to the measurement of the angle between the two radars and target, Feature spaces are formed. Finally, classification of marine targets is formed using neural network. After completing the above steps and for testing the accuracy of the proposed algorithm, three real floatings are simulated in feko software. Then, range profiles obtained are mixed with noise and are imported to the neural network designed. Thus, the algorithm accuracy is measured according to different levels of signal to noise ratio. Accuracy of the algorithm, in certain confines, is above the 99%.


[1] D. Freitas, A.J Pieter de Villiers and Willie AJ Nel, “Joint inference of dominant scatterer locations and motion parameters of an extended target in high range-resolution radar, ” IET Radar, Sonar & Navigation, vol. 9, pp. 519-530, 2015.
[2] T. Jinsong and Zhu. Zhaoda, “Comparison study on high resolution radar target recognition,”  Aerospace and Electronics Conference, Vol. 1, 1996
[3] H. Xiao, et al. “Aircraft target recognition using adaptive time-delay neural network,” Aerospace and Electronics Conference, Proceedings of the IEEE Vol. 2, 1997.
[4] H. Xiao, et al. “On Notions of Information Transfer in VLSI Circuits.” Proceedings of the IEEE National Aerospace and Electronics Conference.  1997
[5] M. Richard and J. Westerkamp. “A statistical feature based classifier for robust high range resolution radar target identification,” Automatic Target recognition Working Group, 1997.
[6]  E. Christopher, “Classification of Ultra High Range Resolution Radar Using Decision Boundary Analysis, ” Air force inst of tech wright-patterson AFB OH, 1994.
[7] T. J. and Z. Zhu. “High resolution radar detection based on fractal dimension,”  Aerospace and Electronics Conference, Proceedings of the IEEE, Vol. 1, 1996.
[8] C. W. Cher. Radar target identification based on complex natural resonances, PhD Thesis, University of Queensland, 124, 2015.
[9]  I. Yuehua and X. Xingjian, “Radar HRRP Target Recognition Based on the Improved Kernel Distance Fuzzy C-Means Clustering Method,” IEICE Transaction on Information and Systems, vol. 98.9 pp. 1683-1690, 2015
[10] U. Batuhan, C. Stanley, and A. Mitchell, “Efficient ATR using compression,” IEEE transactions on aerospace and electronic systems, vol. 33.4, pp.  1199-1211, 1997.
[11] D. et al., Pattern Classification: 2nd Edition, New York, John Wiley & Sons, 2001
[12] S. Mallinis and M. Tsakiri-Strati, “A hidden markov models approach for crop classification: linking crop phenology to Time Series of multi-sensor remote sensing data,” Remote Sensing, vol. 7.4, pp. 3633-3650, 2015.
[13] M. Achut, “Multiple-instance hidden markov model for gpr-based landmine detection,” Geoscience and Remote Sensing, IEEE Transactions, vol. 53.4, pp.  1737-1745, 2015.
[14] W. Yadong, “Radar vertical profile of reflectivity correction with tRMM observations using a neural network approach,”  hydrometeorology, vol. 16.5, pp. 2230-2247, 2015.
[15] C. Marvin “Radar signature database validation for automatic target recognition,” U.S. Patent No. 8.350.749. 8, Jan. 2013.
[16] F. Beckner, et. al. Automatic Radar Target Identification (ARTI) Phase H (U). Technical Report WRDC-TR-90-1003, Wright-Patterson AFB, OH: General Dynamics (Pomona) and U.S. Air Force Wright Labs, General Dynamics, March 1992
[17] Unkown, Author. Automatic Radar Target Identification (ARTI) Phase IliA: Algorithm Q User's Manual. Technical Report contract F33615-89-C-1099, Item 0001, CDRL 018-AID, General Dynamics, September 1991
[18]  H. Arthur, B. Dominic and R. Hadley, “Polarization-diverse, heterodyne optical receiving system,” U.S. Patent No. 8.401.401.19, Mar. 2013.
[19] سیدمحمدرضا موسوی, محمد خویشه؛ احسان ابراهیمی و فلاح محمدزاده، «دسته‌بندی اهداف سوناری توسط الگوریتم بهینه‌ساز ازدحام ذرات با گروه‌های مستقل»،  مجله مهندسی برق دانشگاه تبریز، 47، 263-274، بهار1396
[20]  رحیم انتظاری، علی جبار رشیدی،« استخراج تصویر از اهداف با حرکت غیریکنواخت در رادار دهانه ترکیبی معکوس»، مجله مهندسی برق دانشگاه تبریز، 47، 391-400، 1396
[21]  M. zhu and B. zhao, “Sparse Representation Denoising for Radar High Resolution Range Profiling,”  Antennas and Propagation, vol. 17, 2014.
[22]  مهدی هادوی، عبدالله آجورلو، محمدمهدی نایبی، محمدحسن باستانی، «مدلسازی وابستگی کوتاه مدت و بلندمدت نمونه‌های متوالی تابع پروفیل فاصله اهداف به منظور تشخیص اهداف راداری»، مجله رادار دانشگاه جامع امام حسین (ع)، 3، 52-42، تابستان 1394
[23] G. Sun, X. Dong, and G. Xu, “Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier,” Neurocomputing, vol. 69, pp. 387-402, 2006.
[24] مریم‌السادات خاتمی، تولید نمایه‌های برد در رادارهای با قدرت تفکیک بالا، کارشناسی ارشد، دانشگاه شهید بهشتی، تهران، 96، 1395
[25] علی‌محمد دهقانی، سیدمحمد علوی، عباس شیخی، رضا حق‌مرام و مریم‌السادات خاتمی، «تخمین حالت دریا با استفاده از رادار با قدرت تفکیک بالا»، مجله رادار دانشگاه جامع امام حسین (ع)، 14، 40-31، زمستان 1395
[26] V. Michele, J. Baker, and D. Griffiths. “Radar target classification using multiple perspectives,” IET Radar, Sonar & Navigation, vol. 1.4, pp.  300-307, 2007.
[27] وحیده منعمی‌زاده، جواد حمیدزاده، «جستجوی  kنزدیک‌ترین همسایه با روش ترکیب خطی»، مجله مهندسی برق دانشگاه تبریز، 81، 1249-1273، پاییز 1396