Electrical energy density and dissipation in graphene: Equivalent-circuit method

Author

Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran

Abstract

In this paper, by using the equivalent electrical circuit method, an analytical study for the electrical and dissipated energy densities in graphene is presented. In the first step, electronic excitations on the graphene surface are described by an infinitesimally thin layer of electron fluid, ignoring the electrons completely. Then, general expressions of electrical and dissipated energy densities are obtained by using a simple equation of motion for an electron of the electron fluid (that is subjected to a time dependent external electric field) in conjunction with the equivalent electrical circuit method. In the next step, in the range of high frequencies, by means of the conductivity formula of the system that is recently presented, the problem is investigated in a two-fluid model.

Keywords


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[2] P. A. D. Goncalves, and N. M. R. Peres, An introduction to graphene plasmonic, World Scientific, 2016.
[3] I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications,” Renew. Sustain. Energy Rev, vol. 13, pp. 1513–1522, 2009.
[4] مهدی احمدی جیردهی، وحید سهرابی تبار و رضا همتی، « مدیریت بهینه و تصادفی ریزشبکه مبتنی بر سیستم فازی- عصبی تطبیقی توسط کنترل توان خط تبادلی به‌وسیله تجهیزات D-FACTS »، مجله مهندسی برق دانشگاه تبریز، دوره 47 ،شماره3 ، صفحه 816-805 ،1396.
[5] رضا همتی، ندا عزیزی و مهدی احمدی جیردهی، « یک روش کنترلی کارآمد برای اینورترهای متصل بین باطری‌های ذخیره‌ساز انرژی و شبکه»، مجله مهندسی برق دانشگاه تبریز، دوره 47 ،شماره3، صفحه1290-1277 ،1396.
[6] H. L. Bertoni, and A. Hessel, “Group velocity and power flow relations for surface waves in plane stratified anisotropic media,” IEEE Trans. Antennas Propag, vol. 14, pp. 344-352, 1966.
[7] D. K. Cheng, Field and wave electromagnetics, Addison-Wesley Publishing Company, 1989.
[8] A. Moradi, “Damping properties of plasmonic waves on graphene,”,Phys. Plasmas, vol. 24, pp. 072114, 2017.
[9] Z. L. Miskovic, S. Segui, J. L. Gervasoni, N. R. Arista, “Energy losses and transition radiation produced by the interaction of charged particles with a graphene sheet,” Phys. Rev. B, vol. 94, pp. 125414, 2016.
[10] Z. Wang, M. Zhou, X. Lin, H. Liu, H. Wang, F. Yu, S. Lin, E. Li, and H. Chen, “A circuit method to integrate metamaterial and graphene in absorber design,” Opt. Commun., vol. 329, pp. 76–80, 2014.
[11] Y. S. Cao, L. Jiang and A. E. Ruehli, “An equivalent circuit model for graphene-based terahertz antenna using the PEEC method,” IEEE Trans. Antenna Propag., vol. 64, pp. 1385–1393, 2016.
[12] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-Based Supercapacitor with an Ultrahigh Energy Density,” Nano Lett. vol. 10, pp. 4863-4868, 2010.
[13] Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small, vol. 25, pp. 1805–1839, 2012.
[14] D.  J. Mowbray, Z.  L. Miskovic, F. O. Goodman, and Y. N. Wang, “Interactions of fast ions with carbon nanotubes: Two-fluid model,” Phys. Rev. B, vol. 70, pp. 195418, 2004.
[15] A. Politano, I. Radovi, D. Borka, Z. L. Miskovc, G. Chiarello, “Interband plasmons in supported graphene on metal substrates: Theory and experiments,” Carbon, vol. 96, pp. 91–97, 2017.