[1] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound event detection in multisource environments using source separation,” in Proc. of CHiME, Munich, Germany, pp. 36–40, 2011.
[2] R. Hennequin, R. Badeau and B. David, “NMF with Time–Frequency Activations to Model Nonstationary Audio Events,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 744-753, 2011.
[3] Y. Ohishi, D. Mochihashi, T. Matsui, M. Nakano, H. Kameoka, T. Izumitani, and K. Kashino, “Bayesian semi-supervised audio event transcription based on Markov indian buffet process,” IEEE (ICASSP), Vancouver, Canada, pp. 3163–3167, 2013.
[4] X. Lu, Y. Tsao, S. Matsuda and C. Hori, “Sparse representation based on a bag of spectral exemplars for acoustic event detection,” IEEE (ICASSP), Florence, Italy, pp. 6255-6259, 2014.
[5] E. Benetos, G. Lafay, M. Lagrange, and M. Plumbley, “Detection of overlapping acoustic events using a temporally constrained probabilistic model,” IEEE (ICASSP), Shanghai, China, pp. 6450–6454, 2016.
[6] T. Komatsu, Y. Senda, and R. Kondo, “Acoustic event detection based on non-negative matrix factorization with mixtures of local dictionaries and activation aggregation,” IEEE (ICASSP), Shanghai, China, pp. 2259–2263, 2016.
[7] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M.D. Plumbley, “Detection and classification of acoustic scenes and events,” IEEE Transactions on Multimedia vol. 17 no. 10 pp. 1733 – 1746, 2015.
[8] I. Choi, K. Kwon, S. Hyun Bae, and N, Soo Kim, “DNN-based sound event detection with exemplar-based approach for noise reduction,” in Proc. of IEEE (DCASE), Budapest, Hungary, pp. 16-19, September 2016.
[9] مسعود گراوانچی زاده و صنم ایمانی شاملو، «جداسازی تک گوشی گفتار صدادار مبتنی بر روشهای جدید انتخاب واحدهای زمان- فرکانس در فرکانسهای پایین و بالا،» مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 61-51، 1392.
[10] مسعود گراوانچی زاده و پریا دادور، «تخمین SNR ورودی با استفاده از ماسک باینری در سیستمهای مبتنی بر آنالیز ترکیب شنیداری محاسباتی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحات 196-187، 1395.
[11] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and H. Van hamme, “An exemplar-based NMF approach to audio event detection,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, PP. 1-4, Oct 2013.
[12] A. Cont, “Realtime multiple pitch observation using sparse non-negative constraints,” International Symposium on Music Information Retrieval (ISMIR), Victoria, Canada, PP. 206-211, Aug 2006.
[13] A. Cont, S. Dubnov, D. Wessel, “Realtime multiple-pitch and multiple-instrument recognition for music signals using sparse non-negative constraints,” in Proc. of 10th Int. Conf. Digital Audio Effects (DAFx), Bordeaux, France, PP. 85-92, 2007.
[14] S. Innami and H. Kasai, “NMF-based environmental sound source separation using time-variant gain features,” Computers & Mathematics with Applications, vol. 64, no. 5, pp. 1333 – 1342, 2012.
[15] M. W. Berry, M. Browne, A. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and applications for approximate nonnegative matrix factorization,” Comput. Stat. Data Anal. Vol. 52, no. 1, pp. 155–173, 2007.
[16] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation, Wiley-Blackwell, 2009.
[17] C. Fevotte, and J. Idier, “Algorithms for nonnegative matrix factorization with the beta-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421-2456, 2011.
[18] M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, and S. Sagayama, “Convergence guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence,” IEEE International Workshop on Machine Learning for Signal Processing, pp. 283–288, Finland, 2010.
[19] D. L. Sun, C. Fevotte, “Alternating direction method of multipliers for nonnegative matrix factorization with the β-divergence,” IEEE (ICASSP), Florence, Italy, pp. 6201-6205, 2014.
[20] S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, Cambridge, 2004.
[21] F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, “Multiplicative updates for nonnegative quadratic programming,” Neural Computation, Vol. 19, no. 8, pp. 2004–2031, 2007.
[22] M. Shashanka, B. Raj, P. Smaragdis, “Probabilistic latent variable models as nonnegative factorizations,” Comput. Intell. Neurosci., doi: 10.1155/2008/947438, May 11, 2008.
[23] L. Vuegen, B. Van Den Broeck, P. Karsmakers, J. F. Gemmeke, B. Vanrumste, and H. Van hamme, “An MFCC-GMM approach for event detection and classification,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA,PP. 50-52, Oct 2013.
[24] Music Information Retrieval Evaluation eXchange (MIREX): Multiple Fundamental Frequency Estimation & Tracking. Available online: http://www.music-ir.org/mirex/, 2016.
[25] T. Heittola, M. Annamarie, sed_eval, Evaluation toolbox for online: https://github.com/TUT-ARG/sed_eval, 2016.