Design of an IR-UWB Transmitter with Adaptive Power Spectral Density in 0.02 – 1.4 Gpps

Authors

Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

Most of the ultra wideband (UWB) transmitters are designed for a specific pulse repeating rate (PRR). This means that the power spectral density (PSD) in these transmitters is not completely adaptable to the FCC power mask and for some PRRs, it exceeds the mask power limits. This is an important issue in short-range applications requiring a variable PRRs. In this paper, an on-off keying (OOK) impulse radio ultra wideband (IR-UWB) transmitter with adaptive PSD is proposed in 180 nm TSMC CMOS technology. The adaptivity of the PSD with PRR has been obtained using a limited monocycle precharge (LMPC) technique and phase/frequency detector (PFD) has been used in order to expand its range. The UWB pulse has been generated based on shaping filter. The results of post layout simulation show that the PSD peak value is kept closely below the equivalent isotropically radiated power (EIRP) limit, i.e., -41.3 dBm/MHz in 0.02-1.4 Gpps with only the variation of 3.38 dBm/MHz. The overall power consumption of transmitter including all of the circuits at PRRs of 10, 100, 500, and 1400 Mpps is only 0.293, 0.6235, 0.792, and 2.022 mW, respectively. The active circuit area excluding bonding pads and STG pads is only 0.38 mm2.

Keywords


[1] B. Schleicher, Impulse-radio ultra-wideband systems for vital-sign monitoring and short-range communications, Universität Ulm, 2012.
[2] D. Barras, A low-power impulse radio ultra-wideband CMOS radio-frequency transceiver, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19019, 2010.
[3] S. T. Abraha, Impulse Radio Ultra Wideband over Fiber Techniques for Broadband In-Building Network Application, Ph.D. thesis, Eindhoven: Tech. Univ. Eindhoven, 2012. http://alexandria. tue. nl/extra2/735363. pdf.
[4] A. Yarovoy, “Ultra-wideband systems,” in 33rd European Microwave Conference, pp. 597-600, 2003.
[5] R. S. Kshetrimayum, “An introduction to UWB communication systems,” IEEE Potentials, vol. 28, no. 2, pp. 9-13, 2009.
[6] L. Zhou, Z. Chen, C.-C. Wang, F. Tzeng, V. Jain and P. Heydari, “A 2-Gb/s 130-nm CMOS RF-correlation-based IR-UWB transceiver front-end,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 1117-1130, 2011.
[7] M. G. Khan, On Modulation and Detection Schemes for Low-Complexity Impulse Radio UWB Communications, Blekinge Institute of Technology, 2011.
[8] C.-C. Chong, F. Watanabe and H. Inamura, “Potential of UWB technology for the next generation wireless communications,” in 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, pp. 422-429, 2006.
[9] L. Zwirello, Realization Limits of Impulse-Radio UWB Indoor Localization Systems, vol. 71, KIT Scientific Publishing, 2014.
[10] S. Gezici, “A survey on wireless position estimation,” Wireless personal communications, vol. 44, no. 3, pp. 263-282, 2008.
[11] S. Gezici and H. V. Poor, “Position estimation via ultra-wide-band signals,” Proceedings of the IEEE, vol. 97, no. 2, pp. 386-403, 2009.
[12] Z. Sahinoglu, S. Gezici and I. Guvenc, Ultra-wideband positioning systems, Cambridge, New York, 2008.
[13] Z. Zou, Impulse radio UWB for the internet-of-things: a study on UHF/UWB hybrid solution, KTH Royal Institute of Technology, 2011.
[14] امیر رستگارنیا، اعظم خلیلی، توحید یوسفی رضایی، «الگوریتم مبتنی بر شبکه تطبیقی نفوذی برای تخمین مقاوم میدان اسکالر در شبکه‌های سنسوری بی‌سیم»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحات 527-535، 1396.
[15] A. Apsel, X. Wang and R. Dokania, Design of ultra-low power impulse radios vol. 124, Springer Science & Business Media, 2013.
[16] F. C. Commission, Code of Federal Regulations, Part 15–Radio Frequency Devices, vol. 1, ed. Title 47 Telecommunication, pp. 902-928, 2009.
[17] Acuson Freestyle Ultrasound System, Siemens Medical Solutions. http://www.healthcare.siemens.com/ultrasound/ultrasound-point-of-care/acuson-freestyle-ultrasound-system
[18] O. Z. Batur, E. Akdag, H. Akkurt, A. Oncu, M. Koca and G. Dundar, “An ultra low-power dual-band IR-UWB transmitter in 130-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 11, pp. 701-705, 2012.
[19] L. Xia, Y. Huang and Z. Hong, “Low power amplitude and spectrum tunable IR-UWB transmitter,” Electronics Letters, vol. 44, no. 20, pp. 1200-1201, 2008.
[20] M. Shen, Y.-Z. Yin, H. Jiang, T. Tian and J. H. Mikkelsen, “A 3–10 GHz IR-UWB CMOS pulse generator with 6 mW peak power dissipation using a slow-charge fast-discharge technique,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 9, pp. 634-636, 2014.
[21] M. Shen, Y.-Z. Yin, H. Jiang, T. Tian, O. K. Jensen and J. H. Mikkelsen, “A 0.76-pJ/Pulse 0.1–1 Gpps Microwatt IR-UWB CMOS Pulse Generator With Adaptive PSD Control Using a Limited Monocycle Precharge Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 806-810, 2015.
[22] R. Xu, Y. Jin and C. Nguyen, “Power-efficient switching-based CMOS UWB transmitters for UWB communications and radar systems,” IEEE Transactions on microwave theory and techniques, vol. 54, no. 8, pp. 3271-3277, 2006.
[23] M. J. Zhao, B. Li and Z. H. Wu, “20-pJ/pulse 250 Mbps low-complexity CMOS UWB transmitter for 3–5 GHz applications,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 3, pp. 158-160, 2013.
[24] Y. Zhu, J. D. Zuegel, J. R. Marciante and H. Wu, “Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 808-823, 2009.
[25] S. V. Mir-Moghtadaei, A. Fotowat-Ahmady, A. Z. Nezhad and W. A. Serdijn, “A 90 nm-CMOS IR-UWB BPSK Transmitter With Spectrum Tunability to Improve Peaceful UWB-Narrowband Coexistence,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 6, pp. 1836-1848, 2014.
[26] D. Liu, X. Ni, R. Zhou, W. Rhee and Z. Wang, “A 0.42-mW 1-Mb/s 3-to 4-GHz Transceiver in 0.18-µm CMOS With Flexible Efficiency, Bandwidth, and Distance Control for IoT Applications,” IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1479-1494, 2017.
[27] Y.-T. Lo, C.-C. Yui and J.-F. Kiang, “OOK/BPSK-modulated impulse transmitters integrated with leakage-cancelling circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 218-224, 2013.
[28] B. Razavi, RF Microelectronics, 2nd ed., Upper Saddle River, NJ, USA: Prentice-Hall, 2011.
[29] H. Shao and N. C. Beaulieu, “Direct sequence and time-hopping sequence designs for narrowband interference mitigation in impulse radio UWB systems,” IEEE Transactions on Communications, vol. 59, no. 7, pp. 1957-1965, 2011.
[30] H. Hedayati and K. Entesari, “A 3.1–10.6 GHz ultra wide-band impulse radio transmitter with notch implementation for in-band interferers in 90nm CMOS,” in Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE, pp. 459-462, 2012.
[31] S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE Journal on selected areas in communications, vol. 28, no. 6, pp. 889-900, 2010.
[32] M. Mansuri, D. Liu and C.-K. Yang, “Fast frequency acquisition phase-frequency detectors for GSa/s phase-locked loops,” in Solid-State Circuits Conference, 2001. ESSCIRC 2001. Proceedings of the 27th European, pp. 333-336, 2001.
[33] C. Hu, R. Khanna, J. Nejedlo, K. Hu, H. Liu and P. Y. Chiang, “A 90 nm-CMOS, 500 Mbps, 3–5 GHz fully-integrated IR-UWB transceiver with multipath equalization using pulse injection-locking for receiver phase synchronization,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1076-1088, 2011.
[34] M. Crepaldi and D. Demarchi, “A 130-nm CMOS 0.007-Ring-Oscillator-Based Self-Calibrating IR-UWB Transmitter Using an Asynchronous Logic Duty-Cycled PLL,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 5, pp. 237-241, 2013.
[35] N. H. Weste and K. Eshraghian, Principles of CMOS VLSI design: A systems perspective, 2nd ed, Addision-Wesley Publishing, California, 1993.
[36] B. Van Zeghbroeck, Principles of semiconductor devices, Colarado University, 2004.
[37] S. Bourdel, Y. Bachelet, J. Gaubert, R. Vauche, O. Fourquin, N. Dehaese, et al., “A 9-pJ/pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 65-73, 2010.
[38] J. Radic, A. Djugova, L. Nagy and M. Videnovic-Misic, “New design of low power, 100Mb-s IR-UWB pulse generator in 0.18 µm CMOS technology,” Microelectronics Journal, vol. 44, no. 12, pp. 1215-1222, 2013.
[39] Y. Zheng, Y. Zhu, C.-W. Ang, Y. Gao and C.-H. Heng, “A 3.54 nJ/bit-RX, 0.671 nJ/bit-TX Burst Mode Super-Regenerative UWB Transceiver in 0.18-CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 8, pp. 2473-2481, 2014.
[40] M. Crepaldi, D. Dapra, A. Bonanno, I. Aulika, D. Demarchi and P. Civera, “A very low-complexity 0.3–4.4 GHz 0.004 mm all-digital ultra-wide-band pulsed transmitter for energy detection receivers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2443-2455, 2012.
[41] O. Fourquin, S. Bourdel, J. Gaubert, R. Vauché, N. Dehaese, A. Chami, et al., “Chip on board 3–10-GHz impulse radio ultra wideband transmitter with optimized die to antenna wire bond transition,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 5, pp. 749-758, 2013.