Wind Power Investment in Electricity Markets Consisting of Strategic Producers and Elastic Demand

Authors

1 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 High Voltage Substation Research Group, Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

In this paper, a novel framework is proposed to solve wind power investment in incomplete electricity markets in the presence of strategic companies and considering elastic demand. In the proposed framework, the main objective is to investigate the profitability of wind units in oligopolistic power markets where consumers has good elasticity versus electricity price. The considered investment problem is represented as a bilevel model where investment decisions are taken at upper level with the aim of maximizing investment profit, and market clearing problem in the lower level. According to oligopolistic feature of market, Cournot game is applied for modeling strategic interactions among market players. Thus, market equilibrium is determined by maximizing generation companies’ (GENCOs) profit considering balance of supply and demand. Uncertainty of wind power production is modeled with a set of scenarios. Upper problem are solved using genetic algorithm, while the lower level problem is solved by mathematical algorithm for various scenarios of wind power. The proposed model is examined on a three-bus network and on IEEE 30 bus network.

Keywords


[1] T. Ackermann; Historical development and current status of wind power. Wind power in power systems, 1st eddition, John Wiley & Sons, 2005.
[2] Z. Yuan, D. Liu, C. Jiang, and Z. Hou, “Analysis of supplier equilibrium strategy considering transmission constraints”, IEE Proceedings-Generation, Transmission and Distribution, vol. 152, pp. 17-22, 2005.
[3] H. A. e Oliveira, “Coalition formation feasibility and Nash–Cournot equilibrium problems in electricity markets: A Fuzzy ASA approach”, Applied Soft Computing, vol. 35, pp. 1-12, 2015.
[4] A. Maiorano, Y. H. Song, M. Trovato, “Dynamics of noncollusive oligopolistic electricity markets”, Proc. IEEE Power Eng. Soc. Winter Meeting, pp. 838-844, 2000.
[5] P. Siriruk, “Cournot competition under uncertainty in power markets”, 2009.
[6] L. B. Cunningham, R. Baldick, and M. L. Baughman, “An empirical study of applied game theory: Transmission constrained Cournot behavior”, IEEE Transactions on Power Systems, vol. 17, pp. 166-172, 2002.
[7] B. Willems, Cournot competition in the electricity market with transmission constraints: Kath. Univ., Department Economie, Center for Economic Studies, 2000.
[8] L. Baringo, and A. Conejo, “Wind power investment within a market environment”, Applied Energy, vol. 88, no. 9, pp. 3239-3247, 2011.
[9] L. Baringo, and A. J. Conejo, “Risk-constrained multi-stage wind power investment”, IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 401-411, 2013.
[10] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms”, Renewable Energy, vol. 85, pp. 620-630, 2016.
[11] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation”, IEEE Transactions on Power Systems, vol. 29, pp. 3003-3011, 2014.
[12] C. Kongnam, S. Nuchprayoon, “Development of investment strategies for wind power generation”, Proc. IEEE Canada Electrical Power Conf., pp. 308-313, 2007.
[13] J. Wang, M. Shahidehpour, Z. Li, A. Botterud, “Strategic generation capacity expansion planning with incomplete information”, IEEE Trans. Power Syst., vol. 24, no. 2, pp. 1002-1010, 2009.
[14] L. Baringo and A. J. Conejo, “Transmission and wind power investment”, IEEE transactions on power systems, vol. 27, pp. 885-893, 2012.
[15] Baringo L and Conejo A.J, “Wind power investment: A Benders decomposition approach,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 433–441, Feb. 2012.
[16] L. Maurovich-Horvat, T. K. Boomsma, and A. S. Siddiqui, “Transmission and wind investment in a deregulated electricity industry”, IEEE Transactions on Power Systems, vol. 30, pp. 1633-1643, 2015.
[17] G. A. Orfanos, P. S. Georgilakis, and N. D. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration”, IEEE Transactions on Power Systems, vol. 28, pp. 1355-1362, 2013.
[18] محمدرضا کریمی، جمشید آقایی و امین رحیمی رضایی، به کارگیری بهینه‌سازی استوار جهت مقابله با عدم‌قطعیت نیروگاه‌های بادی در برنامه-ریزی توسعه تولید" مجله مهندسی برق دانشگاه تبریز،  جلد 47، شماره 2 ، تابستان 1396.
[19] امیرحسین زارع نیستانک؛ رحمت‌الله هوشمند؛ معین پرستگاری. بهره‌برداری بهینه از نیروگاه‌های بادی با استفاده از نیروگاه‌های تلمبه‌ای-ذخیره‌ای به منظور کاهش عدم قطعیت در عملکرد آنان در بازار برق" جلد 41، شماره 2، پاییز 1390.
[20] B. Hobbs, “Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets”, IEEE Transactions on power systems, vol. 16, pp. 194-202, 2001.
[21] J. Contreras, M. Klusch, and J. B. Krawczyk, “Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets”, IEEE Transactions on Power Systems, vol. 19, pp. 195-206, 2004.
[22] S. A. Gabriel, A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz, “Complementarity modeling in energy markets”, vol. 180: Springer Science & Business Media, 2012.
[23] B. F. Hobbs, C. B. Metzler, and J.-S. Pang, “Strategic gaming analysis for electric power systems: An MPEC approach”, IEEE transactions on power systems, vol. 15, pp. 638-645, 2000.
[24] O. Alsac and B. Stott, “Optimal load flow with steady-state security” , IEEE transactions on power apparatus and systems, pp. 745-751, 1974.