State Estimation of Nonlinear Dynamics Systems over the Digital Noiseless Channel Subject to Limited Capacity: Application in Remote Control of Autonomous Vehicles

Authors

Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, the nonlinear dynamics and especially the dynamics of the miniature drones or autonomous road vehicles is considered as the unicycle model; and then, by implementing a suitable linearization method, a proper encoder and decoder are designed. Since tracking the state trajectory of these nonlinear systems by remote estimator is achieved by sending measurements through the limited capacity digital noiseless channel, proper encoder and decoder are needed to compensate the effects of communication imperfections. In the method presented in this paper, linearization occurs when the state estimation error increases; and when the estimation error decreases, the previous linearized zone is used. Computer simulations illustrate the satisfactory performance of the proposed method in this paper.

Keywords


[1] D. F. Delchamps, "Stabilizing a linear system with quantized state feedback," IEEE Transactions on Automatic Control, vol. 35, no. 8, pp. 916-924, 1990.
[2] W. S. Wong, and R. W. Brockett, "Systems with finite communication bandwidth constraints. I. State estimation problems," IEEE Transactions on Automatic Control, vol. 42, no. 9, pp. 1294-1299, 1997.
[3] W. S. Wong, and R. W. Brockett, "Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback," IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1049-1053, 1999.
[4] A. Sahai, “Anytime information theory,” Ph.D Thesis, Massachusetts Institute of Technology, 2001.
[5] G. N. Nair and R. J. Evans, “Communication-limited stabilization of linear systems,” Proceedings of the 39th IEEE Conference on Decision and Control, 2000.
[6] G. N. Nair and R. J. Evans, “Mean square stabilisability of stochastic linear systems with data rate constraints,” Proceedings of the 41st IEEE Conference on Decision and Control, 2002.
[7] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear systems with finite feedback data rates,” SIAM Journal on Control and Optimization, vol. 43, no. 2, pp. 413-436, 2004.
[8] G. Nair, S. Dey and R. J. Evans, “Infimum data rates for stabilising Markov jump linear systems,” Proceedings. 42nd IEEE Conference on Decision and Control, 2003.
[9] S. Tatikonda and S. Mitter, “Control over noisy channels,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1196-1201, 2004.
[10] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1056-1068., 2004.
[11] S. Tatikonda, A. Sahai and S. Mitter, “Stochastic linear control over a communication channel”, IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1549-1561, 2004.
[12] N. Elia, “When Bode meets Shannon: Control-oriented feedback communication schemes,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1477-1488, 2004.
[13] K. Li and J. Baillieul, “Robust quantization for digital finite communication bandwidth (DFCB) control,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1573-1584, 2004.
[14] N. C. Martins, M. A. Dahleh and N. Elia, “Feedback stabilization of uncertain systems in the presence of a direct link,” IEEE Transactions on Automatic Control, pp. 438-447, 2006.
[15] P. Minero, L. Coviello and M. Franceschetti, “Stabilization over Markov feedback channels: the general case”, IEEE Transactions on Automatic Control, vol. 58, no. 2, pp. 349-362, 2013.
[16] C. D. Charalambous and A. Farhadi, “LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels,” Automatica, vol. 44, no. 12, pp. 3181–3188, 2008.
[17] G. N. Nair, et al., “Topological feedback entropy and nonlinear stabilization”, IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1585-1597, 2004.
[18] D. Liberzon and J. P. Hespanha, “Stabilization of nonlinear systems with limited information feedback,” IEEE Transactions on Automatic Control, vol. 50, pp. 910-915, 2005.
[19] S. Tatikonda, “Some scaling properties of large distributed control systems”, Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.
[20] A. S. Matveev and A. V. Savkin, “Stabilization of multisensor networked control systems with communication constraints”, 5th Asian Control Conference, 2004.
[21] G. N. Nair, R. J. Evans and P. E. Caines,  “Stabilising decentralised linear systems under data rate constraints”, The 43rd IEEE Conference on Decision and Control, 2004.
[22] علوی، بیات، «ارسال تصویر از طریق سیستمهای چند ورودی چند خروجی با تخصیص توان ارسالی نامتقارن»، مجله مهندسی برق دانشگاه تبریز، جلد 40، شماره 4، صفحات 139-152، زمستان 1394.
[23] A. Farhadi and N. Ahmed, “Tracking nonlinear noisy dynamic systems over noisy communication channels”, IEEE Transactions on Communications, vol. 59, no. 4, pp. 955-961, 2011.
[24] C. D. Charalambous, A. Farhadi and S. Z. Denic, “Control of continuous-time linear Gaussian systems over additive Gaussian wireless fading channels: A separation principle”, IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1013-1019, 2008.
[25] L. Schenato, et al., “Foundations of control and estimation over lossy networks”. Proceedings of the IEEE, vol. 95, no. 1, pp. 163-187, 2007.
[26] V. Gupta, B.  Hassibi and R. M. Murray, “Optimal LQG control across packet-dropping links,” Systems & Control Letters, vol. 56, no. 6, pp. 439-446, 2007.
[27] J. Nilsson, B. Bernhardsson and B. Wittenmark, “Stochastic analysis and control of real-time systems with random time delays”, Automatica, vol. 34, no. 1, pp. 57-64, 1998.
[28] J. Nilsson, “Real-time control systems with delays”, Ph.D Thesis, Lund Institute of Technology Lund, Sweden, 1998.
[29] M. Yu, et al., “Stabilization of networked control systems with data packet dropout via switched system approach”, IEEE International Symposium on Computer Aided Control Systems Design, 2004.
[30] P. Seilerand and R. Sengupta, “An H∞ approach to networked control”, IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 356-364, 2005.
[31] لاری، «تخصیص منابع جهت کمینه‌سازی تأخیر ارسال در سامانه‌های مخابراتی تغذیه‌شونده به‌صورت بی سیم»، مجله مهندسی برق دانشگاه تبریز، انتشار آنلاین از فروردین 1396.
[32] رستگارنیا، خلیلی و یوسفی رضایی، «الگوریتم مبتنی بر شبکه تطبیقی نفوذی برای تخمین مقاوم میدان اسکالر در شبکه‌های سنسوری بی سیم»، مجله مهندسی برق دانشگاه تبریز، جلد 74، شماره 2، صفحات 527-535، تابستان 1396.
[33] N. Elia and J.N. Eisenbeis, “Limitations of linear remote control over packet drop networks”, The 43rd IEEE Conference on Decision and Control, 2004.
[34] N. Elia  and.J.N. Eisenbeis, "Limitations of linear control over packet drop networks," IEEE Transactions on Automatic Control, vol. 56, no. 4, pp. 826-841, 2011.
[35] D. Quevedo and I. Jurado, “Stability of sequence-based control with random delays and dropouts,” IEEE Transactions on Automatic Control, pp. 1296-1302, 2014.
[36] B. Tavassoli, “A continuous-time approach to networked control of nonlinear systems”, The 50th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2011.
[37] H. Lin and P.J. Antsaklis, “Stability and stabilizability of switched linear systems: A survey of recent results”, IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 308-322, 2009.
[38] G. Zhai, B. Hu, K. Yasuda and A.N. Michel, “Qualitative analysis of discrete-time switched systems”, Proceedings of the American Control Conference, pp. 1880-1885, 2002.
[39] A. Farhadi, J. Domun and C. Canudas de Wit, “A supervisory control policy over an acoustic communication network”, International Journal of Control, vol. 88, no. 5, pp. 946-958, 2015.