Fault Detection in Transmission Lines Using Three-Phase Instantaneous Active Power and Moving Average

Authors

1 School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran

2 School of Advanced Technologies, Shiraz University, Shiraz, Iran

Abstract

When a fault occurs in transmission line, first it should be detected, then the type of the fault should be recognized and in final step, location of the fault should be estimated. Fault detection as fast as possible helps to do the whole procedure faster. In this paper, a novel method for transmission line fault detection based on three-phase instantaneous active power and moving average technique is proposed. Three-phase instantaneous active power signal is the total of instantaneous active power for each phase. This signal is constant during normal operation of the network but in fault situation, some changes will happen and by utilization of moving average concept, the fault can be detected. The proposed fault detection method is evaluated in five different systems and the results denote the high accuracy and quickness of the proposed approach. For validation of the suggested method, a comparison is carried out with seven similar previous methods.

Keywords


[1] P. Gopakumar, M. J. B. Reddy and D. K. Mohanta, “Transmission line fault detection and localisation methodology using PMU measurements,” IET Generation, Transmission & Distribution, Vol. 9, No. 11, pp. 1033-1042, 2015.
[2] K. Chen, C. Huang and J. He, “Fault detection, classification and location for transmission lines and distribution systems: a review on the methods,” High Voltage, Vol. 1, No. 1, pp. 25-33, 2016.
[3] A.R. Adly, R. A. El Sehiemy, A.Y. Abdelaziz and N. M. Ayad, “Critical aspects on wavelet transforms based fault identification procedures in HV transmission line,” IET Generation, Transmission & Distribution, Vol. 10, No. 2, pp. 508-517, 2016.
[4] A.G. Shaik and R. R. V. Pulipaka, “A new wavelet based fault detection, classification and location in transmission lines,” International Journal of Electrical Power & Energy Systems, Vol. 64, pp. 35-40, 2015.
[5] K. M. Silva, B. A. Souza and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, Vol. 21, No. 4, pp. 2058-2063, 2006.
[6] D. Das, N. K. Singh and A. K. Sinha, “A comparison of Fourier transform and wavelet transform methods for detection and classification of faults on transmission lines,” Power India Conference, pp. 7-11, 2006.
[7] J.A. Jiang, J.Z. Yang, Y.H. Lin, C.W Liu and J.C. Ma, “An adaptive PMU based fault detection/location technique for transmission lines. I. Theory and algorithms,” IEEE Transactions on Power Delivery, Vol. 15, No. 2, pp. 486-493, 2000.
[8] S. R Samantaray and P. K. Dash, “Transmission line distance relaying using a variable window short-time Fourier transform,” Electric Power Systems Research, Vol. 78, No. 4, pp. 595-604, 2008.
[9] R. N. Mahanty and P.B.D Gupta, “A fuzzy logic based fault classification approach using current samples only,” Electric Power Systems Research, Vol. 77, No. 5, pp. 501-507, 2007.
[10] M. E. Masoud and M. M. A. Mahfouz, “Protection scheme for transmission lines based on alienation coefficients for current signals,” IET Generation, Transmission & Distribution, Vol. 4, No. 11, pp. 1236-1244, 2010.
[11] X.N. Lin, M. Zhao, K. Alymann and P. Liu, “Novel design of a fast phase selector using correlation analysis,” IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1283-1290, 2005.
[12] سعید هاشمی نژاد، سیدقدرت‌اله سیف السعادات، مرتضی رزاز و محمود جورابیان، »دسته بندی خطا و شناسایی فازهای تحت خطا در سیستم‌های قدرت با استفاده از تئوری امواج یار و سیستم فازی« مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، 1394.
[13] فرهاد نامداری و مسلم صالحی، »یک طرح حفاظتی خیلی سریع مبتنی بر امواج اولیه سیار جریان برای خطوط انتقال با استفاده از ریخت شناسی ریاضی« مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، 1396.
[14] B. Mahamedi and J. G. Zhu, “Fault classification and faulted phase selection based on the symmetrical components of reactive power for single-circuit transmission lines,” IEEE Transactions on Power Delivery, Vol. 28, No. 4, pp. 2326-2332, 2013.
[15] P. Dutta, A. Esmaeilian and M. Kezunovic, “Transmission-line fault analysis using synchronized sampling,” IEEE Transactions on Power Delivery, Vol. 29, No. 2, pp. 942-950, 2014.
[16] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[17] H. Samet, A. Shabanpour‐Haghighi and T. Ghanbari, “A fault classification technique for transmission lines using an improved alienation coefficients technique,” International Transactions on Electrical Energy Systems, Vol. 27, No. 1, 2017.
[18] M.A. Jarrahi, H. Samet, H. Raayatpisheh, A. Jafari and M. Rakhshan, “An ANFIS-Based Fault Classification Approach in Double-Circuit Transmission Line Using Current Samples,” International Work-Conference on Artificial Neural Networks, pp. 225-236, Springer, 2015.
[19] D. Guillen, M. R. A. Paternina, A. Zamora, J. M. Ramirez and G. Idarraga, “Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm,” IET Generation, Transmission & Distribution, Vol. 9, No. 15, pp. 2294-2302, 2015.
[20] A.G. Phadke and J. S. Thorp, Computer relaying for power systems. John Wiley & Sons, 2009.
[21] A. K. Pradhan, A. Routray and S. R. Mohanty, “A moving sum approach for fault detection of power systems,” Electric Power Components and Systems, Vol. 34, No. 4, pp. 385-399, 2006.
[22] M. Biswal, “Faulty phase selection for transmission line using integrated moving sum approach,” IET Science, Measurement & Technology, Vol. 10, No. 7, pp. 761-767, 2016.
[23] S. R. Mohanty, A. K. Pradhan and A. Routray, “A cumulative sum-based fault detector for power system relaying application,” IEEE Transactions on Power Delivery, Vol. 23, No. 1, pp. 79-86, 2008.
[24] P. K. Dash, S. Das and J. Moirangthem, “Distance protection of shunt compensated transmission line using a sparse S-transform,” IET Generation, Transmission & Distribution, Vol. 9, No. 12, pp. 1264-1274, 2015.
[25] A. R Adly, R. A. El Sehiemy and A. Y. Abdelaziz, “A novel single end measuring system based fast identification scheme for transmission line faults,” Measurement, Vol. 103, pp. 263-274, 2017.
[26] M. M.Eissa and M. M. A. Mahfouz, “New high-voltage directional and phase selection protection technique based on real power system data,” IET Generation, Transmission & Distribution, Vol. 6, No. 11, pp. 1075-1085, 2012.