Designing a Switching Controller for Controlling Cart Position and Angle of an Inverted Pendulum with Disturbance

Authors

Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Iran

Abstract

In this paper, a novel switching control method based on two switching logic contained  Harris index and fuzzy supervisor in presence of disturbance is proposed for controlling a cart position and angle of an inverted pendulum. The Harris index is calculated using Markov parameters and output variance of the closed loop system. In order to show the performance of the switching logic, simultaneous usage of advantages of several different controllers in a control loop of a nonlinear systems subject to disturbance with variable power is proposed for the first time. The designing stages of proposed method include three steps. First, proper controllers including proportional–integral–derivative, linear quadratic regulator and sliding mode control have been designed. Then, Harris index and finally the fuzzy supervisor are also designed. The Harris index is determined in order to choose the proper controller as first switch logic. The fuzzy supervisor is designed to improve and supervision on performance of Harris index as second switching logic. Numerical Simulation results show that the proposed method at any moment due to changes disturbance, choose the best controller and it can reduce chattering, domain of control signal and sensitivity to disturbance.

Keywords


[1] R.  J.  Wai and L. J. Chang, “Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 674-692, 2006.
[2] Y. Xin, J.  Xu, B. Xu and H. Xin, “The inverted-pendulum model with consideration of pendulum resistance and its LQR controller,” 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, pp. 3438-3441, Harbin, China, 2013.
[3] W. Li, H. Ding and K. Chang, “An investigation on the design and performance assessment of double-PID and LQR controllers for the inverted pendulum,” UKACC International Conference on Control 2012, pp. 190-196, Cardiff, U. Kingdom, 2006.
[4] L. B. Prasad, B. Tyagi and H. O. Gupta, “Optimal control of nonlinear inverted pendulum system using PID controller and LQR: performance analysis without & with disturbance input,” International Journal of Automation and Computing, vol. 11, no. 6, pp. 661-670, 2014.
[5] J. Huang, S. Ri, L. Liu, Y. Wang, J. Kim and G. Pak, “Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum,” IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2400-2407, 2015.
[6] H. Fukushima, K. Muro and F. Matsuno, “Sliding mode control for transformation to an inverted pendulum mode of a mobile robot with wheel-arms,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4257-4266, 2015.
[7] M. S. Park and D. Chwa, “Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 40-55, 2009.
[8] S. J. Huang and C. L. Huang, “Control of an inverted pendulum using grey prediction model,” IEEE Transactions on Industry Applications, vol. 36, no. 2, pp. 452-458, 2000.
[9] K. Yokoyama and M. Takahashi, “Dynamics-based nonlinear acceleration control with energy shaping for a mobile inverted pendulum with a slider mechanism,” IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 40-55, 2016.
[10] C. Yang, Z. Li, R. Cui and B. Xu, “Neural network-based motion control of an underactuated wheeled inverted pendulum model,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 11, pp. 2004-2016, 2014.
[11] H. K. Lam, F. H. F. Leung and Y. S. Lee, “Design of a switching controller for nonlinear systems with unknown parameters based on a fuzzy logic approach,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 34, no. 2, pp. 1068-1074, 2004.
[12] علی‌رضا گودرزیان، نویدرضا ابجدی، غلام‌رضا عرب مارکده و یحیی عبداللهی، «طراحی و ساخت کنترل‌کننده بهبودیافته مد لغزشی مرتبه کاهش یافته با کنترل PI برای مبدل POESLL »، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحه 209-219، تابستان 1395.
[13] A. Levant, “Chattering analysis,” IEEE Transactions on Automatic Control, vol. 55, no. 6, pp. 1380-1389, 2010.
[14] X. Li, X. Yu and O. Han, “Chattering analysis of time-delayed second-order sliding mode control systems using poincare´ map,” 49th IEEE Conference on Decision and Control, pp. 5144-5149, USA, 2010.
[15] A. Moridi, S. Armaghan, A. Khaki Sedigh and S. Choobkar, “Design of switching control systems using control performance assessment index,” Proceedings of the World Congress on Engineering 2011, pp. 13-18, United Kingdom, 2011.
[16] D. Liberzon, Switching in Systems and Control, 1nd Edition, Boston, MA: Birkhauser, 2003.
[17] L. R. G. Carrilo, G. R. F. Golunga, G. Sanahuja and R. Lozano, “Quad rotorcraft switching control: an application for the task of path following,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1255-1267, 2014.
[18] Y. Yang and J. M. Lee, “A switching control strategy for nonlinear systems under uncertainty”, 13th International Conference on Control, Automation and Systems, pp. 976-980, Korea, 2013.
[19] M. F. Heertjes, I. H. Sahin, N. V. D. Wouw and W. P. M.  Heemels, “Switching control in vibration isolation systems,” IEEE Transactions on Control Systems Technology, vol. 21, no. 3, pp. 626-635, 2013.
[20] S. Vichai, S. Hirai and S. Sugaya, “Parameter adaptation using switched controller,” IEEE Institute of Technologists, pp. 1-4, China, 2008.
[21] M. Zhang and T. J. Tran, “A hybrid switching control strategy for nonlinear and underactuated mechanical systems,” IEEE Transactions on Automatic Control, vol. 48, no. 10, pp. 1777-1782, 2003.
[22] C. A. Ibanez, M. S. Castanon, O. O. Frias, ”A switching controller for the stabilization of the damping inverted pendulum cart system”, International Journal of Innovative Computing, Information and Control, vol. 9, no. 9, pp. 3583-3596, 2013.
[23] T. Harris, “Assessment of closed loop performance,” Canadian Journal of Chemical Engineering, vol. 67, no. 5, pp. 856-861, 1989.
[24] M. Jelali, “An overview of control performance assessment technology and industrial applications,” Control Engineering Practice, vol. 14, no. 5, pp. 441-446, 2006.
[25] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd Edition, New York, Addison-Wesley, 1995.
[26] K. Ogata, Modern Control Engineering, 5nd Edition, Boston, Prentice Hall, 2010.
[27] R. S. Burns, Advanced Control Engineering, 1nd Edition, Boston, Planta Tree, 2001.
[28] W. Perruquetti and J. P. Barbot, Sliding Mode Control in Engineering, 1st Edition, New York, Marcel Dekker, 2002.
[29] B. Huang and S. L. Shah, Performance Assessment of Control Loops, 1nd Edition, London, Springer, 1999.
[30] B. Huang and R. Kadali, Dynamic Modeling, Predictive Control and Performance Monitoring, 1nd Edition, London, Springer, 2008.
[31] محمد مؤمنی، مهدی آقاصرام، وحید شاکر، سهرام جمالی و مهدی نوشیار، «ارائه یک فیلتر جدید برای حذف نویزهای ضربه‌ای و ترکیب فیلتر پیشنهادی با الگوریتم PSO به منظور کشف و دفاع در برابر حملات سیل‌آسای SYN»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحه 311- 319، بهار 1395.
[32] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 440-458, 2006.
[33] N. A. Shrivastava, A. Khosravi and B. K. Panigrahi, “Prediction interval estimation of electricity prices using PSO tuned support vector machines,” IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 322-331, 2015.
[34] A. K. Maurya, M. R. Bongulwar and B. M. Patre, “Tuning of fractional order PID controller for higher order process based on ITAE minimization,” Annual IEEE India Conference (INDICON), pp.1-5, India, 2015.