Analytical Assessment of the Network Losses Using Structural Generation Decomposition, Considering the Congestion

Authors

Faculty of Electrical & Computer Engineering , Hakim Sabzevari University, Sabzevar, Iran

Abstract

The main goal of this paper is to structural and mathematical analysis of the network losses in different load levels. In order to achieve this aim, at the first step, the market is dispatched and the structural generation decomposition is proposed in lemma 1. This analytical decomposition reveals the sensitivity factor of marginal unit's generation to each bus load variation. At second step, in Lemma 2, the analytical relationship between the change of lines flow and load changes has been obtained. Finally the Loss Index for each bus, LIn and the network LIsys analytically is defined, using lemmas 1&2. LIn analytically indicates the variation of network losses by variation of load at bus n. It is expected that the LIn be the positive value. But, according to the market problem, load and generation disperse and congestion LIn may be the negative value, unexpectedly. In this paper, in view point of the losses, the critical load point of each bus and the network is defined as the bus load or the network load value that change the sign of the LIn and LIsys, respectively. Moreover, the critical area of the load in viewpoint of the losses is defined as the load area that leads the maximum network losses. These results can be useful to decision making on the location options of the DSM programs. Finally the three IEEE standard networks are analyzed.

Keywords


[1] A. Nourai, V. I. Kogan and Chris M. Schafer. “Load leveling reduces T&D line losses.” IEEE Transactions on Power Delivery, vol. 23, no. 4, p.p. 2168-2173, 2008.
[2] S. Junainah, et al., “Load levelling and loss reduction by ES in a primary distribution system with PV units.” Smart Grid Technologies-Asia (ISGT ASIA), IEEE Innovative. IEEE, 2015.‌
[3] R. Shaw, et al., “The value of reducing distribution losses by domestic load-shifting: a network perspective.” Energy Policy, vol. 37, no. 8, p.p. 3159-3167, 2009.‌
[4] O. M. Bamigbola, M. M. Ali and M. O. Oke, “Mathematical modeling of electric power flow and the minimization of power losses on transmission lines.” Applied Mathematics and Computation, no. 241, p.p. 214-221, 2014.
[5] M. Kumar, K. S. Sandhu and A. Kumar. “Wind speed variation impact on transmission loss reduction in electricity market.” Procedia Computer Science, vol. 70, p.p. 526-537, 2015.‌
[6] M. Hojjat and M. H. Javidi Dasht Bayaz. “Security based congestion management considering transmission network contingencies in a competitive environment.” 28st International Power System Conference, 2013.
[7] K. M. Jagtap and K. Kh. Dheeraj, "Loss allocation in radial distribution networks with various distributed generation and load models.” International Journal of Electrical Power & Energy Systems, vol. 75, 173-186, 2016.‌
[8] F. D. Galiana, A. J. Conejo and I. Kockar. “Incremental transmission loss allocation under pool dispatch.” IEEE Transactions on Power Systems, vol. 17, no. 1, p.p. 26-33, 2002.‌
[9] A. J. Conejo, et al., “Transmission loss allocation: a comparison of different practical algorithms.” IEEE Transactions on Power Systems, vol. 17, no. 3, p.p. 571-576, 2002.‌
[10] D. A. Lima, A. J. Conejo and J. Contreras. “Allocation of the cost of transmission losses in a multimarket framework.” Generation, Transmission and Distribution, IEE Proceedings, vol. 153, no. 6, 2006.‌
[11]  مریم رمضانیان لنگرودی، سیدمازیار میرحسینی مقدم «استفاده از روش یادگیری رقابتی برای قیمت‌دهی استراتژیک شرکت‌های تولید بر اساس LMP در بازار برق»، مجله مهندسی برق دانشگاه تبریز، پذیرفته‌شده، 1395.
[12] W. Ongsakul and N. Petcharaks, “Transmission constrained generation scheduling in a centralized electricity market by improved Lagrangian relaxation.” Power Engineering Society General Meeting, pp. 1156–1163. 2004.
[13] C. Li. Tseng, et al., “A transmission-constrained unit commitment method in power system scheduling” Decision Support Systems, vol. 24, p.p. 297–310, 1999.
[14] M. E. Hajiabadi and H. Rajabi Mashhadi, “LMP decomposition: a novel approach for structural market power monitoring.” Electr. Power Syst. Res, vol. 99, pp. 30–37, 2013.
[15] جابر ولی نژاد، تقی بارفروش "ارزیابی تأثیر مشوق‌های سرمایه‌گذاری تحت شرایط عدم قطعیت روی برنامه‌ریزی توسعه تولید در بازارهای رقابتی برق" مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره1، صفحات:357-368، بهار 1395.
[16] P. Kundur, Power System Stability and Control. vol. 7. New York: McGraw-hill, 1994.‌
[17] L. Wu, M. Shahidehpour and T. Li. “Cost of reliability analysis based on stochastic unit commitment.” IEEE Transactions on Power Systems, vol. 23, no. 3, p.p. 1364-1374,‌ 2008.
[18] R. T. Force, “The IEEE reliability test system-1996.” IEEE Trans. on Power Syst, vol. 14, no. 3, p.p. 1010-1020, 1999.‌