Scheduling of Generation and Reserve of Thermal Generation Resources Considering Load and Wind Uncertainty in Presence of Energy Storage and Demand Response


1 Faculty of Electrical and Computer Engineering, Noushirvani University of Technology , Babol, Iran

2 Substation Research Group, Noushirvani University of Technology , Babol, Iran


In this paper, a stochastic model is introduced to study the influence of demand response programs on economic and system security indices in uncertain conditions. The power system under study includes thermal and wind power sources and superconductive magnitude energy storage ‌in which, the uncertainties of load and wind power and stochastic outages of generation units and transmission lines are considered. The problem is formulated through a two stage stochastic optimization model and is solved by utilizing Mixed Integer Linear Programming (MILP) technique. The results of the studies of the 6-bus system illustrates that the employment of energy storage resources and demand response along with the generation reserve not only reduce the costs of operation in power system, but also maintain its security level through managing the uncertainties. Sensitivity analyses show that‌using ‌the ‌appropriate capacity of demand-side reserve not only reduces the cost of the power system ‌but ‌also ‌improve system reliability and avoids additional investment.‌ Moreover, ‌The result‌s ‌show ‌that increasing load forecasting error has more effects on the operation cost of the power system.‌


[1] E. Heydarian-Forushani, M. E. H. Golshan, M. Shafie-khah and J. P. S. Catalão. “Impacts of stochastic demand response resource scheduling on large scale wind power integration,” Australian Universities Power Engineering Conference (AUPEC), pp. 1-6, Wollongong, Australia, 2015.
[2] Y. Huang, Q. P. Zheng and J. Wang. “Two-stage stochastic unit commitment model including non-generation resources with conditional value-at-risk constraints,” Electric Power Systems Research, vol. 116, pp. 427-438, 2014.
[3] حسین شکری، سجاد نجفی روادانق، «حل مسئله مشارکت بهینه واحدهای نیروگاهی در حضور منابع انرژی تجدیدپذیر«، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 1، صفحه 29-42، بهار 1394.
[4] J. Wu, B. Zhang, W. Deng and K. Zhang. “Application of cost-cvar model in determining optimal spinning reserve for wind power penetrated system,” International Journal of Electrical Power & Energy Systems, vol. 66, pp. 110-115, 2015.
[5] سعید صبوری، رسول کاظم‌زاده، هدایت صبوری، «ارزیابی میزان ریسک‌پذیری بهره‌بردار ناشی از عدم‌قطعیت منابع بادی و بار در مسئله در مدار قرار گرفتن واحدهای حرارتی با استفاده از شاخص ارزش در خطر شرطی«، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحه 135-148 ، تبریز، تابستان 1395.
[6] B. Wang, D. F. Gayme, X. Liu and C. Yuan. “Optimal siting and sizing of demand response in a transmission constrained system with high wind penetration,” International Journal of Electrical Power & Energy Systems, vol. 68, pp. 71-80, 2015.
[7] M. Nikzad and B. Mozafari. “Reliability assessment of incentive-and priced-based demand response programs in restructured power systems,” International Journal of Electrical Power & Energy Systems, vol. 56, pp. 83-96, 2014.
[8] N. G. Paterakis, O. Erdinc, A. G. Bakirtzis and J. P. S. Catalão. “Load-following reserves procurement considering flexible demand-side resources under high wind power penetration,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1337-1350, 2015.
[9] E. Heydarian-Forushani, M. E. H. Golshan, M. Shafie-khah and     J. P. S. Catalão. “Optimal coordination of battery energy storages and demand response programs with application to wind integration,” IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp. 1-6, Oshawa, Canada, 2015.
[10] N. Li, C. Uçkun, E. M. Constantinescu, J. R. Birge, K. W. Hedman and A. Botterud. “Flexible operation of batteries in power system scheduling with renewable energy,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 685-696, 2016.
[11] C. Sahin, M. Shahidehpour and I. Erkmen, “‌Allocation of hourly reserve versus demand response for security-constrained scheduling of ‌stochastic wind energy,” IEEE ‌Transactions on Sustainable Energy, vol. 4, pp. 219-228, 2013‌.‌
[12] T. Das, V. Krishnan and J. D. McCalley. “Assessing the benefits and economics of bulk energy storage technologies in the power grid,” Applied Energy, vol. 139, pp. 104-118, 2015.
[13] M. A. Ortega-Vazquez and D. S. Kirschen, “Estimating the spinning ‌reserve ‌requirements ‌in systems with ‌significant ‌wind power generation penetration,” IEEE ‌Transaction on Power ‌Systems, vol. 22, no. 1, pp. 24-33, 2009.‌
[14] A. J. Conejo, M. Carrión and J. M. Morales, ‌Decision Making under Uncertainty ‌in ‌Electricity ‌Markets, Springer, New York, 2010.‌
[15] S. Talari, M. R. Haghifam and A. Akhavein. “Optimization of the microgrid scheduling with considering contingencies in an uncertainty environment,” International Journal of Smart Electrical Engineering, vol. 2, no. 2, pp. 95-101, 2013 .
[16] R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, E. Khan, P. Kos, G. Nourbakhsh and J. Oteng-Adjei. “A reliability test system for educational purposes-basic data,” IEEE Transactions on Power Systems, vol. 4, no. 3, pp. 1238-1244, 1989.
[17] K. W. Hedman, M. C‌ .‌Ferris, R. P. O'Neill, E. B. ‌Fisher and S. S. Oren, “Co-‌optimization ‌of generation unit commitment and transmission switching with n-1 ‌reliability,”IEEE ‌Transactions ‌on Power Systems, vol. 25, pp. 1052-1063, 2010.‌
[18] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding. “Progress in electrical energy storage system: a critical review,” Progress in Natural Science, vol. 19, no. 3, pp. 291-312, 2009.‌
[19] B. Zakeri and S. Syri, “Electrical energy storage ‌systems: a comparative life cycle cost analysis,” ‌Renewable and Sustainable Energy Reviews, vol. 42, pp. 569-596, 2015.‌