Static Bidding Strategy based on Transactive Energy Concept in Multiple Home Microgrid Systems by Using Non- Cooperative Game Theory Approach

Authors

1 Dep. of Electrical Power Engineering, Guilan Science and Research Branch, Islamic Azad University, Rasht, Iran

2 Dep. of Electrical Power Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

3 School of the Built Environment, University of Salford, 4th Floor, Maxwell Building Room 712 (THINKlab), Salford M5 4WT, Manchester, United kingdom

4 Dept. of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Abstract

With the intense exploitation and expansion of distributed uncontrollable energy resources along with increasing demand side participation in modern distribution power systems and networks, the Transactive energy (TE) management framework has emerged as a topic of keen interest, in particular, addressing the concept of maintaining equilibrium state of system between the local power supply and load demand. In this paper, an innovative model is devised within an optimal framework of Transactive energy management based on load responsiveness in multi-functional home Microgrids in an electricity retail market, along with the smart static bidding strategy for the production and consumption resources by using the ability of relaxation algorithm based Nikaido-Isoda functional theory. In the proposed implementation, home Microgrids which consists of variable nature distributed energy resources, energy storage systems and responsive load devices, the transfer of energy with adjacent neighbouring Microgrids and electricity retail companies, with the aim of maximizing profits and sustaining internal load demand, is studied. Furthermore, the consumers would be able to cooperate with each other using the proposed algorithm in order to minimize market clearing price while maximizing their profit by reaching to the Nash equilibrium. Based on this multi-functional method that takes into account the functional objectives of uncertainty parameters related to uncontrollable energy resources, the load demand and electricity price, the amount of delivered power and optimum price of participating players in the market, the overall profit is determined. The simulation results highlights the effectiveness of the proposed algorithm as a global system of practice which can be used to progressively engage players for active participation and simultaneously improving the profits for home-type Microgrids.

Keywords


[1] T. Sahin and D. Shereck, “Renewable energy sources in a transactive energy market,” in The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014), 2014, pp. 202–208.
[2] J. Song, “Research of retail electricity market operation mechanism based on user’s side,” in 2016 China International Conference on Electricity Distribution (CICED), 2016, pp. 1–5.
[3] Jing Yu, Jian-Zhong Zhou, Jun-Jie Yang, Wei Wu, Bo Fu and Rong-Tao Liao, “Agent-based retail electricity market: modeling and analysis,” in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), vol. 1, pp. 95–100.
[4] W. Su and A. Q. Huang, “A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers,” Appl. Energy, vol. 119, pp. 341–350, 2014.
[5] N. Zhang, Y. Yan and W. Su, “A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers,” Appl. Energy, vol. 154, pp. 471–479, 2015.
[6] N. Zhang, Y. Yan, S. Xu and W. Su, “Game-theory-based electricity market clearing mechanisms for an open and transactive distribution grid,” in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5.
[7] H. Yang, R. Zhou and J. Xin, “Dynamic cournot game behavior of electric power providers in retail electricity market,” in IEEE Power Engineering Society General Meeting, 2005, pp. 544–549.
[8] W. Y. Chiu, H. Sun and H. Vincent Poor, “A Multiobjective Approach to Multimicrogrid System Design,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2263–2272, 2015.
[9] J. Lee, J. Guo, J. K. Choi and M. Zukerman, “Distributed Energy Trading in Microgrids: A Game Theoretic Model and Its Equilibrium Analysis,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 1–1, 2015.
[10] A. Ipakchi, “Demand side and distributed resource management — A transactive solution,” in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–8.
[11] S. A. Chandler, J. H. Rinaldi, R. B. Bass and L. Beckett, “Smart grid dispatch optimization control techniques for transactive energy systems,” in 2014 IEEE Conference on Technologies for Sustainability (SusTech), 2014, pp. 51–54.
[12] J. Hu, G. Yang, H. W. Bindner and Y. Xue, “Application of Network-Constrained Transactive Control to Electric Vehicle Charging for Secure Grid Operation,” IEEE Trans. Sustain. Energy, vol. PP, no. 9, pp. 1–1, 2016.
[13] S. Behboodi, D. P. Chassin, C. Crawford and N. Djilali, “Electric Vehicle Participation in Transactive Power Systems Using Real-Time Retail Prices,” in 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016, pp. 2400–2407.
[14] “Power Ledger -A New Decentralized Energy Marketplace - Power Ledger - Where Power meets Blockchain.” [Online]. Available: powerledger.io.
[15] CEN, “Biomass Energy Centre,” CEN/TC 335 biomass standards, 2007. [Online]. Available: http://www.biomassenergycentre.org.uk.
[16] M. Marzband, A. Sumper, J. L. Domínguez-García and R. Gumara-Ferret, “Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP,” Energy Convers. Manag., vol. 76, pp. 314–322, 2013.
[17] M. Marzband, E. Yousefnejad, A. Sumper and J. L. Domínguez-García, “Real time experimental implementation of optimum energy management system in standalone Microgrid by using multi-layer ant colony optimization,” Int. J. Electr. Power Energy Syst., vol. 75, pp. 265–274, Feb. 2016.
[18] M. Marzband, F. Azarinejadian, M. Savaghebi and J. M. Guerrero, “An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined With Markov Chain,” IEEE Syst. J., vol. PP, no. 99, pp. 1–11, 2015.
[19] M. Marzband, “Experimental validation of optimal real-time energy management system for Microgrids,” Ph.D. dissertation, Dept. d’Enginyeria Elèctrica, EU d’Enginyeria Tècnica Ind. de Barcelona, Universitat Politècnica de Catalunya, Barcelona, Spain, 2013.
[20] M. Marzband, M. Javadi, J. L. Domínguez-García and M. Mirhosseini Moghaddam, “Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties,” IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 2999–3009, Sep. 2016.
[21] معصومه جوادی، سیدمازیار میرحسینی مقدم، موسی مرزبند، «مدیریت بهینه انرژی ریزشبکه‌ها در بازار خرده‌فروشی بر پایه روش تئوری بازی غیرهمکارانه با در نظرگرفتن عدم قطعیت»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحه 63-74، بهار 1395.
[22] معصومه جوادی، موسی مرزبند، سیدمازیار میرحسینی مقدم، «مدیریت بهینه انرژی در سیستم‌های چند-ریزشبکه‌ای در بازار خرده‌فروشی انرژی برپایه الگوریتم سلسه‌مراتبی تعاملی»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 107-120، پاییز 1395.
[23] معصومه جوادی، موسی مرزبند، سیدمازیار میرحسینی مقدم، «مدیریت بهینه ریزشبکه‌ها به‌همراه استراتژی قیمت‌گذاری برپایه روش تئوری بازی با در نظر گرفتن ائتلاف منابع تولید»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 4، صفحه 95-107، زمستان 1395.
[24] M. Marzband, M. Ghadimi, A. Sumper and J. L. Domínguez-García, “Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode,” Appl. Energy, vol. 128, pp. 164–174, 2014.
[25] M. Marzband, A. Sumper, A. Ruiz-álvarez, J. L. Domínguez-García and B. Tomoiagâ, “Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets,” Appl. Energy, vol. 106, pp. 365–376, 2013.