Cyber Topologies Impacts on Smart Grid Reliability Considering Direct Cyber-Power Interdependency

Authors

Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Due to the rising interest of using smart grids and its unreliable nature, the reliability analysis is highly regarded. The application of communication infrastructures and information technology in smart grids has created a system consisting power and cyber networks (control, monitoring, and protection networks). Due to the fact that cyber networks are prone to failure, using methods that cover the proper operation of both cyber and power networks together are essential for assessing reliability indices of smart grids. The importance of considering direct cyber network failures on reliability assessment is also studied. Cyber network topology transition is the main solution for the improvement of reliability assessment that is discussed in this paper. The method is simulated on an actual distribution network of Hormozgan Regional Electrical Company (HREC) of Iran. By calculating the reliability indices, the results clarify that smart grid reliability assessment will not be improved without considering an optimal cyber network topology. So, optimization techniques are used for improving reliability assessment, with the consideration of the constraints.

Keywords


[1] P. P. Varaiya, F. F. Wu and J. W. Bialej, “Smart operation of smart grid: risk-limiting dispatch,” Proc. IEEE, vol. 99, no. 1, pp. 40-57, Jan. 2011.
[2] F. Aminifar, M. Fotuhi-Firuzabad, M. Shahidehpour and A. Safadarian, "Impact of WAMS malfunction on power system reliability assesment," IEEE Trans. on Smart Grid, vol. 3, no. 3, pp. 1302-1309, 2012.
[3] A. G. Bruce, "Reliability analysis of electric utility SCADA systems," IEEE Trans. Power Syst., vol. 13, no. 3, pp. 844-849, 1998.
[4] D. Kirschen and F. Bouffard, “Keep the lights on and the Information Flowing, a new framework for analyzing power system security,” IEEE Power Energy Mag., pp. 50–60, Jan.–Feb. 2009.
[5] H. Tram, “Technical and operation considerations in using smart metering for outage management,” in Proc. IEEE/PES Transm. Distrib. Conf. Expo. 2008, pp. 1–3, 2008.
[6] L. Pereira, “Cascade to black [system blackouts],” IEEE Power Energy Magazine, vol. 2, no. 3, pp. 54–57, May–Jun. 2004.
[7] Fang, S. Misra, X. Gue and D. Yang, "Smart grid- the new and improved power grid: a survey," Communications surveys and tutorials, IEEE,  vol. 14, no. 4, pp. 944-980, 2012.
[8] B. Falahati and Y. Fu, “Reliability assessment of smart grid considering direct cyber-power interdependencies,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1515-1524, 2012.
[9] B. Falahati and Y. Fu, “Reliability assessment of smart grid considering indirect cyber-power interdependencies,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1677-1685, 2014.
[10] C. Singh, A. Sprintson, and A. , “Reliability assurance of cyber-physical power systems,” in Power Energy Society Gen. Meet., 2010 IEEE, pp. 1–6, Jul. 25–29, 2010.
[11] Y. M. Atwa and E. F. El-Saadany, A.-C. Guise, “Supply adequacy assessment of distribution system including wind-based DG during different modes of operation,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 78-86, Feb. 2010.
[12] Y. M. Atwa and E. F. El-Saadany, M. M. A. Salama, R. Seethapathy, M. Assam, S. Conti,  “Adequacy evaluation of distribution system including wind/solar DG during different modes of operation,” IEEE Trans. Power syst., vol. 26, no. 4, pp. 1945-1952, Nov. 2011.
[13] H. Hashemi-Dezaki, H. Askarian-Abyaneh, M. Garmrudi, H. Mahdinia and K. Mazlumi, “A novel approach based on reliability sensitivity analysis to allocate protective devices,” Turk J Elec Eng & Comp Sci., vol. 22, no. 2, pp. 315-324, 2014.
[14] H. Hashemi-Dezaki, S. H. Hosseinian, H. Askarian-Abyaneh and S. M. Mousavi Agah, “Optimized operation and maintenance costs to improve system reliability by decreasing the failure rate of distribution lines”, Turk. J. Elec. Eng. & Comp. Sci., vol. 21, no. 2, pp. 2191-2204, Dec 2013.
[15] H. Hashemi-Dezaki, H. Askarian-Abyaneh, G. B. Gharehpetian and H. Nafisi, “Optimized allocation of DGs to improve system reliability based on loading effects,” Arab. J. Sci. Eng., vol. 39, no. 5, pp. 3907-3915, 2014.
[16] B. Falahati and Y. Fu, "Faults and failures in cyber-power interdependent networks," in T&D Conference and Exposition, 2014 IEEE PES, 2014, pp. 1-5.
[17] S. Wei-Liang, C. Chung-Shiuan, K. C. J. Lin, and K. A. Hua, "Autonomous Mobile Mesh Networks," Mobile Computing, IEEE Transactions on, vol. 13, pp. 364-376, 2014.
[18] M. N. Albasrawi, N. Jarus, K. A. Joshi, and S. S. Sarvestani, "Analysis of Reliability and Resilience for Smart Grids," in Computer Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual, pp. 529-534, 2014.
[19]     حسین شکری، سجاد نجفی،  "حل مسئله مشارکت بهینه واحدهای نیروگاهی در حضور منابع انرژی تجدیدپذیر"، مجله مهندسی برق دانشگاه تبریز, دوره 45، شماره 1، بهار 1394.
[20]     رضا قربانی, کاظم مظلومی, "جایابی و تعیین ظرفیت بهینه محدودساز جریان خطا با لحاظ عدم قطعیت در توان تولیدی توربین بادی", مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 4، زمستان 1395.
[21] A. H. Ahangar, H. A. Abyaneh, and G. B. Gharepetian, "Negative effects of cyber network (control, monitoring, and protection) on reliability of smart grids based on DG penetration," in Computer and Knowledge Engineering (ICCKE), 2015 5th International Conference on, pp. 54-60, 2015.
[22] L. Jikeng, W. Xudong, Q. Ling, “Reliability evaluation for the distribution system with distributed generation,” Euro. Trans. Electr. Power, vol. 21, no. 1, pp. 895–907, 2011.
[23]     حامد هاشمی دزکی، " مدیریت ریسک شبکه‌های هوشمند انرژی الکتریکی در شرایط عدم قطعیت پارامترهای سیستم،" رساله دکتری، دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، 1394.
[24] S. Mirjalili, "The Ant Lion Optimizer," Advances in Engineering Software, vol. 83, pp. 80-98, 2015.
علائم و اختصارات
 
iامین ماتریس حالت سیستم
 
در دسترس پذیری المان k ام
 
متغیر باینری معرف دسترس‌پذیریj  امین تجهیز درi  امین ماتریس حالت سیستم
 
در دسترس ناپذیری المان k ام
 
تعداد اجزای شبکه سایبری
 
نرخ خرابی
 
تعداد اجزای شبکه قدرت
 
نرخ تعمیر
 
احتمال حالت i ام
 
توان تولیدی
LOLP1
احتمال از دست رفتن بار
LOLE2
تعداد ساعات از دست رفتن بار
LOEE3
انرژی مورد انتظار از دست رفته
sgn
تابع علامت
 
میانگین سرعت
 
انحراف معیار
 
سرعت قطع ابتدایی
 
سرعت قطع انتهایی
 
توان بار
 
پارامتر شکل
 
توان تلفاتی
 
پارامتر مقیاس
 
توان تولیدی پست
 
توان نامی باد
 
مجموع بارزدایی در حالات مختلف
 
سرعت نامی
EENS19
انرژی مورد انتظار تأمین نشده