MIMO Channel Estimation by QR Decomposition and LMS Adaptive Filter

Authors

Faculty of Technology of Information & Communication, University of Imam Hossein, Tehran, Iran

Abstract

Channel estimation is one of the most decisive factors in evaluating performance of the MIMO systems. There are different methods for estimation of MIMO systems, that, adaptive algorithm is which. Among adaptive algorithms, Least Mean Square (LMS) algorithm is the most popular because it has the features of a proper filter including simplicity in applying and no complexity in using. In the other hand, some of important detectors in MIMO systems use QR decomposition for signal extraction, which is of a higher level of complexity. In this paper, a new method for MIMO channel QR estimation is proposed and instead of estimating the channel matrix H and them decomposing QR in detector, from the beginning, Q and R estimated directly actually, channel matrix is detained through the estimation of Q and R. according to MATLAB simulation applying LMS algorithm and QR decomposition in channel estimation with iteratively and/or SNR increment will result in the error reduction.

Keywords


[1] S.M.Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE Journal, vol. 16, no. 8, pp. 1451-1458, 1998.
[2] Wang, Xiaowen and K. J. Liu, “Adaptive channel estimation using cyclic prefix in multicarrier modulation system,” IEEE Communications Letters, vol. 3, no. 10, pp.  291-293, 1999.
[3] Carrascosa, Patricia Ceballos and Milica Stojanovic, “Adaptive channel estimation and data detection for underwater acoustic MIMO–OFDM systems,” Oceanic Engineering, IEEE Journal, vol. 35. no. 3, pp. 635-646, 2010.
[4] Sampath, Hemanth and Joe Tellado, “Adaptive channel estimation for wireless systems,” U.S. Patent Application, no. 09/880, pp. 574, 2001.
[5] Stojanovic, M. L. Freitag and M. Johnson, “Channel-estimation-based adaptive equalization of underwater acoustic signals,” OCEANS'99 MTS/IEEE. Riding the Crest into the 21st Century, Vol. 2, pp. 590-595, 1999.
[6] Kim, Kyung Jun, et al, “Adaptive multi-antenna channel estimation scheme for uplink multiuser environments,” The Journal of Korean Institute of Communications and Information Sciences, vol. 40, no. 7 ,  pp. 1293-1295, 2015
[7] Rana, Md Masud and Md Kamal Hosain, “Adaptive channel estimation techniques for MIMO OFDM systems,” International Journal of Advanced Computer Science and Applications, vol. 1, no. 6, pp. 134-138, 2010
[8] Reddy, B. Siva Kumar and B. Lakshmi, “Adaptive Modulation and Coding with Channel Estimation/Equalization for WiMAX Over Multipath Faded Channels,” Wireless Communications, Networking and Applications. Springer India, pp. 459-472, 2016.
[9] احمدرضا جناب زاده و محسن مجیری، «عملکرد فیلتر شکاف‌دار وفقی در تخمین فرکانس سیگنال‌های تناوبی»، مجله مهندسی برق، دوره 45، شماره 1، صفحه 9-1، دانشگاه تبریز، 1394
[10] عقیل عبیری و محمد رضا محزون، «ردیابی اهداف متحرک هوایی با استفاده از تخمین چگالی کرنل بر اساس الگوریتم فیلتر ذره»، مجله مهندسی برق، دوره 45، شماره 3، صفحه 107-97، دانشگاه تبریز، 1394
[11] محمد رضا برز سفیده‌خان، قادر کریمیان، «روشی جدید مبتنی بر بافت برای تخمین زاویه صفحات مسطح»، مجله مهندسی برق، دوره 40، شماره 1، صفحه 22-13، دانشگاه تبریز، 1389.
[12] Biguesh, Mehrzad and Alex B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE transactions on signal processing, vol. 54, no. 3, pp. 884-893, 2006.
[13] Widrow, Bernard, et al, “Stationary and nonstationary learning characteristics of the LMS adaptive filter." Proceedings of the IEEE, vol. 64. No. 8, pp. 1151-1162, 1976
[14] Gui, Guan, Wei Peng, and Fumiyuki Adachi, “Improved adaptive sparse channel estimation based on the least mean square algorithm,” Wireless Communications and Networking Conference (WCNC), IEEE, pp. 3105-3109,2013.
[15] Reed, Francis A., Paul L. Feintuch and Neil J. Bershad, “Time delay estimation using the LMS adaptive filter--static behavior,” Acoustics, Speech and Signal Processing, IEEE Transactions,vol. 29, no.3, pp. 561-571, 1981.
[16] Das, Bijit Kumar and Mrityunjoy Chakraborty, “Adaptive Combination of l0-LMS Adaptive Filters for Sparse System Identification in Fluctuating Noise Power,” arXiv preprint arXiv:1605.02878, 2016.
[17] G. X. Xing, “On the Nonexistence of Rate-One Generalized Complex Orthogonal Designs,” IEEE Trans. Information. Theory, vol. 49, no. 11, pp. 2984-2988, 2003.
[18] H.Wang, X.G.Xia, “Upper Bounds of Rates of Complex Oorthogonal Space-Time Block Codes,” IEEE Trans. Information. Theory, vol. 49, no. 11, pp. 2788-2796, 2003
[19] B.Hassibi and B.M.Hochwald, “High-Rate Codes that are Linear in Space and Time,” IEEE Trans. Information. Theory, vol. 48, no. 7, pp. 1804-1824, 2002
[20] H. Jafarkhani, “A Quasi-Orthogonal Space-Time Block Code,” IEEE Trans. Commun,vol. 49, no. 1, pp. 1-4, 2001.
[21] O.Tirkkonen, A.Boariu and A.Hottinen, “Minimal Non-Orthogonality Rate 1 SpaceTime Block Code for 3-Tx Antennas,” in Proc. IEEE 6th Int. Symp. on spreadspectrum Tech. and Appl, New Jersey, USA, pp. 429–432, 2000.
[22] Chong, Jin Hui, et al, “A low computational complexity V-BLAST/STBC detection mechanism in MIMO system,” Human-centric Computing and Information Sciences, vol. 4, no.1, pp. 1-28, 2014.
[23] Wang, Jhong-Yu, et al, “A 2× 2–8× 8 sorted QR decomposition processor for MIMO detection,” Solid State Circuits Conference (A-SSCC),  IEEE Asian, 2010.
[24] Cortez, Joaquín, et al, “A very low complexity near ML detector based on QRD-M algorithm for STBC-VBLAST architecture,” 7th IEEE Latin-American Conference on Communications (LATINCOM), 2015.
[25] Lin, Jing-Shiun, et al, “Low-complexity high-throughput QR decomposition design for MIMO systems.,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2342 – 2346, 2015.
[26] Leung, Eleanor, Design of Energy-Efficient Uniquely Factorable Constellations for MIMO and Relay Systems, Ph.D. Thesis, University of Canada, Hamilton, 2016.
[27] Luethi, Peter, et al, “Gram-Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison,” Circuits and Systems, APCCAS, IEEE Asia Pacific Conference, 2008.
[28] Studer, Christoph, Andreas Burg and Helmut Bölcskei, “Soft-output sphere decoding: Algorithms and VLSI implementation,” Selected Areas in Communications, IEEE Journal, vol. 26. no.2, pp. 290-300, 2008.
[29] Lin, Kuang-Hao, et al, “Implementation of QR decomposition for MIMO-OFDM detection systems,” Electronics, Circuits and Systems ICECS, 15th IEEE International Conference, pp. 57-60, 2008.
[30] R. Prakash Kumar, I. Raghu and M. Vinod Kumar Reddy, “Iterative Qr Decompostion Channel Estimation For MIMO-OFDM Systems,” International Journal of Research in Engineering and Technology(IJRET), vol. 2, no. 8, pp. 56-62, 2013.
[31] Cescato, Davide and Helmut Bölcskei, “Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems,” Signal Processing, IEEE Transactions, vol. 59. no.4, pp. 1719-1733, 2011.
[32] Kim, Jong-Kwang, Jae-Hyun Ro and Hyoung-Kyu Song, “Reduced Complexity of QRD-M Detection Scheme in MIMO-OFDM Systems,” Advanced Science and Technology Letters, vol. 122, pp. 214-221, 2016.
[33] KUHU, V, Wireless communications over MIMO channels, John Wile & Sons Ltd 2006.
[34] Golub, Gene and Frank Uhlig, “The QR algorithm: 50 years later its genesis by John Francis and Vera Kublanovskaya and subsequent developments,” IMA Journal of Numerical Analysis, vol. 29, pp. 467-485, 2009.
[35] Farhang-Boroujeny, Behrouz, Adaptive filters: theory and applications, John Wiley & Sons, 1999.