A distributed mechanism for cell scheduling to reduce funneling effect in 802.15.4e-based wireless networks

Abstract

Abstract: The IEEE 802.15.4e standard was proposed to improve the reliability of data transmission at the MAC layer for low power and lossy networks such as wireless sensor networks. The possibility of using multiple non-overlapping channels decreases the probability of collision among cometiting nodes, which, in turn, results in improving the quality of service as well as reducing energy consumption. The TSCH mechanism permits scheduling each data transmission on a pair of channel/timeslot using frequency hopping. However, the standard does not specify how to allocate channel/timeslot for scheduling data transmissions. In this paper, we propose a channel/slot scheduling based on 802.15.4e-TSCH mechanism for wirless sensor networks. In our mechanism, each node determines its requirements in terms of channel/slots by receiving scheduling matrices from its neighbors and according to the traffic volume passing through it.  In this mechanism, we allocate dedicated cells for the nodes in the vicinity of the sink and also for the congested nodes. This mitigates the funneling effect. The simulation results over OpenWSN emulator confirm the efficiency of our mechanism.

Keywords


[1] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),” ANSI/IEEE 802.15.4, 2003.
[2] G. S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell and F. Cuomo, “Funneling-MAC: a localized, sink-oriented MAC for boosting fidelity in sensor networks,” Proceedings of the 4th international conference on Embedded networked sensor systems, pp. 293-306, 2006.
[3] IEEE 802 Working Group, “802.15.4e-2012 - IEEE standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal area networks (LR-WPAN) amendment 1: Mac sublayer,” 2012.
[4] K. Pister and L. Doherty, “TSMP: Time synchronized mesh protocol,” in Parallel and Distributed Computing and Systems (PDCS), pp. 391-398,2008.
[5] سیدهادی اقدسی و مقصود عباس‌پور، «الگوریتم توزیع‌شده جهت فراهم‌آوردن پوشش چندجانبه از هدف در شبکه‌های حسگر بصری»، مجله مهندسی برق دانشگاه تبریز، جلد 42، شماره 2، صفحه 63-53، 1391.
[6] شهرام جمالی و توفان سماپور، «کنترل ازدحام مبتنی بر تخمین در شبکه‌های موردی بی‌سیم»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحه 14-1، 1392.
[7] X. Liu, C. Leckie and S. K. Saleem, “Performance evaluation of a converge-cast protocol for IEEE 802.15.4 tree-based networks,” In Sixth IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 73-78, 2010.
[8] M.R. Palattella, N. Accettura, M. Dohler, L.A. Grieco, and G. Boggia, “Traffic aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15.4e networks,” In 23rd IEEE  International Symposium on.Personal Indoor and Mobile Radio Communications (PIMRC), pp. 327-332, 2012.
[9] N. Accettura, M. R. Palattella, G. Boggia, L.A. Grieco, and M. Dohler, “DeTAS: a decentralized traffic aware scheduling technique enabling IoT-compliant multi-hop low-power and lossy networks,” In Second IEEE WoWMoM Workshop on IoT-SoS, pp. 1-6, 2013.
[10] R. Soua, P. Minet, and E. Livolant, “MODESA: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks,” In IEEE 31st International Performance Computing and Communications Conference (IPCCC), pp. 91-100, 2012.
[11] R. Soua, E. Livolant and P. Minet, “An adaptive strategy for an optimized collision-free slot assignment in multichannel wireless sensor networks,” Journal of sensor and actuator networks, vol. 2, no. 3, p. 449-485, 2013.
[12] M. Heusse, F. Rousseau, R. Guillier and A. Duda, “Idle sense: an optimal access method for high throughput and fairnessin rate diverse wireless LANs,” In ACM SIGCOMM Computer Communication Review, vol. 35, pp. 121–132, 2005.
[13] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE journal on Selected Areas in communications, vol. 18, no. 3, pp. 535–547, 2000.
[14] N. Abdeddaim, F. Theoleyre, M. Heusse and A. Duda, “Adaptive IEEE 802.15. 4 mac for throughput and energy opti-mization,” In IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 223-230, 2013.
[15] A. Koubaa, M. Alves and E. Tovar. “A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks,” In 5th IEEE International Workshop on Factory Communication Systems, pp. 183–192, 2006.
[16] A. Karahan, I. Erturk, S. Atmaca and S. Cakici. “Effects of transmitbased and receivebased slot allocation strategies on energy efficiency in WSN MACs,” Ad Hoc Networks, vol 13, pp. 404-413, 2014.
[17] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang, S. Glaser and K. Pister, “OpenWSN: a standards‐based low‐power wireless development environment,” Transactions on Emerging Telecommunications Technologies, vol.  23, no. 5, pp. 480-493, 2012.
[18] L.M. Feeney and M. Nilsson, “Investigating the energy consumption of a wireless network interface in an ad hoc networking environment,” In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies,vol. 3. pp. 1548-155, 2001.
[19] A. S. Chipcon, “CC2420 datasheet-2.4 GHz IEEE 802.15.4/ZigBee-Ready RF transceiver (Rev. B),” 2007.