Enhanced Fault Detection in MicroLEDs through Microphotoluminescence Microscope Construction

Document Type : Original Article

Author

School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Abstract

The microphotoluminescence microscope has been developed by integrating 405 nm excitation lasers into a conventional optical microscope system, enabling enhanced characterization of microLED devices. These lasers excite the photoluminescence bands of blue microLEDs, which emit at a wavelength of 450 nm. Defective or short-circuited microLED quantum wells fail to emit light under excitation and thus appear as dark spots in the captured images. This contrast facilitates the automatic identification and mapping of faulty microLEDs through advanced image processing algorithms. Early detection of defective microLEDs at the wafer processing stage within LED manufacturing facilities is crucial, as it allows manufacturers to promptly discard or reprocess faulty wafers, significantly reducing production costs and improving overall yield. Furthermore, the microphotoluminescence microscope provides a powerful tool for quality assurance by enabling detailed comparisons of microLED quality across different wafer batches. It also enhances the detection of substantial defects that can easily be overlooked by conventional microscopy techniques. Overall, the integration of this technology offers a cost-effective and efficient approach for in-line inspection and quality control in microLED production.

Keywords

Main Subjects


[1] W. Bao, Z. Su, C. Zheng, J. Ning, S. Xu, Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy, Scientific Reports, 6(1) (2016) 34545.
[2] B.O. Jung, W. Lee, J. Kim, M. Choi, H.Y. Shin, M. Joo, S. Jung, Y.H. Choi, M.J. Kim, Enhancement in external quantum efficiency of AlGaInP red μ-LED using chemical solution treatment process, Sci Rep, 11(1) (2021) 4535.
[3] Z. Chen, S. Yan, C. Danesh, MicroLED technologies and applications: characteristics, fabrication, progress, and challenges, Journal of Physics D: Applied Physics, 54(12) (2021) 123001.
[4] Z. Pan, C. Guo, X. Wang, J. Liu, R. Cao, Y. Gong, J. Wang, N. Liu, Z. Chen, L. Wang, M. Ishikawa, Z. Gong, Wafer-Scale Micro-LEDs Transferred onto an Adhesive Film for Planar and Flexible Displays, Advanced Materials Technologies, 5(12) (2020) 2000549.
[5] H.S. Wasisto, J.D. Prades, J. Gülink, A. Waag, Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs, Applied Physics Reviews, 6(4) (2019) 041315.
[6] Y. Wu, J. Ma, P. Su, L. Zhang, B. Xia, Full-Color Realization of Micro-LED Displays, Nanomaterials (Basel), 10(12) (2020).
[7] S. Zhang, H. Zheng, L. Zhou, H. Li, Y. Chen, C. Wei, T. Wu, W. Lv, G. Zhang, S. Zhang, Z. Gong, B. Jia, H. Lin, Z. Gao, W. Xu, H. Ning, Research Progress of Micro-LED Display Technology, in:  Crystals, 2023.
[8] A.R. Anwar, M.T. Sajjad, M.A. Johar, C.A. Hernández-Gutiérrez, M. Usman, S.P. Łepkowski, Recent Progress in Micro-LED-Based Display Technologies, Laser & Photonics Reviews, 16(6) (2022) 2100427.
[9] Y. Huang, E.-L. Hsiang, M.-Y. Deng, S.-T. Wu, Mini-LED, Micro-LED and OLED displays: present status and future perspectives, Light: Science & Applications, 9(1) (2020) 105.
[10] K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Micro-LEDs, a Manufacturability Perspective, in:  Applied Sciences, 2019.
[11] Z. Liu, C.H. Lin, B.R. Hyun, C.W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.H. Ho, H.C. Kuo, J.H. He, Micro-light-emitting diodes with quantum dots in display technology, Light Sci Appl, 9 (2020) 83.
[12] F. Templier, MicroLED technology: A unique opportunity toward “more than displays”, Information display, 39(4) (2023) 13-17.
[13] J. Chen, H. Ding, X. Sheng, Advanced manufacturing of microscale light-emitting diodes and their use in displays and biomedicine, Journal of information display, 25(1) (2024) 1-12.
[14] D. Chen, Y.C. Chen, G. Zeng, D.W. Zhang, H.L. Lu, Integration technology of micro-LED for next-generation display, Research (Wash D C), 6 (2023) 0047.
[15] L. Hu, J. Choi, S. Hwangbo, D.H. Kwon, B. Jang, S. Ji, J.H. Kim, S.K. Han, J.H. Ahn, Flexible micro-LED display and its application in Gbps multi-channel visible light communication, npj Flexible Electronics, 6(1) (2022) 100.
[16] J.J. Wierer Jr, N. Tansu, III-Nitride Micro-LEDs for Efficient Emissive Displays, Laser & Photonics Reviews, 13(9) (2019) 1900141.
[17] F.H. Hsiao, W.C. Miao, Y.H. Hong, H. Chiang, I.H. Ho, K.B. Liang, D. Iida, C.L. Lin, H. Ahn, K. Ohkawa, C.Y. Chang, H.C. Kuo, Structural and optical analyses for InGaN-based red micro-LED, Discov Nano, 18(1) (2023) 77.
[18] Q. Wang, Z. Ji, Y. Zhou, X. Wang, B. Liu, X. Xu, X. Gao, J. Leng, Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs, Applied Surface Science, 410 (2017) 196-200.
[19] J. Zhan, Z. Chen, Q. Jiao, Y. Feng, C. Li, Y. Chen, Y. Chen, F. Jiao, X. Kang, S. Li, Q. Wang, T. Yu, G. Zhang, B. Shen, Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence, Opt. Express, 26(5) (2018) 5265-5274.
[20] M. Hendijanifard, Developing a micro-photoluminescence microscope for identifying faulty micro-LEDs in the fabrication process, Applied Physics B, 129(11) (2023) 182.
[21] N. Rezaei, A. Mohammadi, M. Gholami, "Optimal Peer-to-Peer Energy Trading Framework for Interconnected DC Microgrids Considering Power Loss Constraints", Journal of Electrical Engineering, University of Tabriz, 2023.
[22] A. Mohammadian Fard, S. Matob, R. Yedipour, "Design and Simulation of High Efficiency Bifacial Perovskite Solar Cell", Journal of Electrical Engineering, University of Tabriz, 2024.