[1] A. Gholami. T. Shekari. M. H. Amirioun. F. Aminifar. M. H. Amini. and A. Sargolzaei. "Toward a consensus on the definition and taxonomy of power system resilience." IEEE Access. vol. 6. pp.32035-32053. 2018
[2] N. Bhusal. M. Abdelmalak. M. Kamruzzaman. and M. Benidris. "Power system resilience: Current practices. challenges. and future directions." IEEE Access. vol. 8. pp. 18064-18086. 2020.
[3] E. O. o. t. P. o. t. U. States. "Economic benefits of increasing electric grid resilience to weather outages." Exec Off Pres. August2013.
[4] S. Küfeoğlu. S. Prittinen. and M. Lehtonen. "A summary of the recent extreme weather events and their impacts on electricity." Int. Rev. Electr. Eng. vol. 9. no. 4. pp. 821-828. 2014.
[6] M. Vaiman et al.. "Risk assessment of cascading outages: Methodologies and challenges." IEEE Transactions on Power Systems. vol. 27. no. 2. p. 631. 2012.
[7] Y. Wang. C. Chen. J. Wang. and R. Baldick. "Research on resilience of power systems under natural disasters—A review." IEEE Transactions on Power Systems. vol. 31. no. 2. pp.1604.1613.2015
[8] D. U. Case. "Analysis of the cyber attack on the Ukrainian power grid." Electricity Information Sharing and Analysis Center (E-ISAC). vol. 388. 2016
[9] M. Panteli. C. Pickering. S. Wilkinson. R. Dawson. and P. Mancarella. "Power system resilience to extreme weather: fragility modeling. probabilistic impact assessment. and adaptation measures." IEEE Transactions on Power Systems. vol. 32. no. 5. pp.3747-3757. 2016.
[10] J. Li. X.-Y. Ma. C.-C. Liu. and K. P. Schneider. "Distribution system restoration with microgrids using spanning tree search." IEEE Transactions on Power Systems. vol. 29. no. 6. pp.3021.3029.2014.
[11] R. Pérez-Guerrero. G. T. Heydt. N. J. Jack. B. K. Keel. and A. R. Castelhano. "Optimal restoration of distribution systems using dynamic programming." IEEE Transactions on Power Delivery. vol.23. no. 3. pp. 1589-1596. 2008.
[12] S. Poudel. A. Dubey. and A. Bose. "Risk-based probabilistic quantification of power distribution system operational resilience." IEEE Systems Journal. vol. 14. no. 3. pp. 3506-3517. 2019.
[13] Y.-T. Hsiao and C.-Y. Chien. "Enhancement of restoration service in distribution systems using a combination fuzzy-GA method." IEEE Transactions on Power Systems. vol. 15. no. 4. pp.1394-1400. 2000.
[14] M. E. Baran and F. F. Wu. "Network reconfiguration in distribution systems for loss reduction and load balancing." IEEE Power Engineering Review. vol. 9. no. 4. pp. 101-102. 2019
[15] L. Davis. "Handbook of Genetic Algorithms. Van Norstrand Reinhold. 1991." New York.
[16] Y. Fukuyama. H.-D. Chiang. and K. N. Miu. "Parallel genetic algorithm for service restoration in electric power distribution systems." International Journal of Electrical Power & Energy Systems. vol. 18. no. 2. pp. 111-119. 1996.
[17] S. A. Taher and M. H. Karimi. "Optimal reconfiguration and DG allocation in balanced and unbalanced distribution systems." Ain Shams Engineering Journal. vol. 5. no. 3. pp. 735-749. 2014.
[18] H. Aki. "Demand-side resiliency and electricity continuity: experiences and lessons learned in Japan." Proceedings of the IEEE. vol. 105. no. 7. pp. 1443-1455. 2017.
[19] R. T. Rockafellar and S. Uryasev. "Conditional value-at-risk for general loss distributions." Journal of banking & finance. vol. 26. no.7. pp. 1443-1471. 2002.
[20] R. T. Rockafellar and S. Uryasev. "Optimization of conditional value-at-risk." Journal of risk. vol. 2. pp. 21-42. 2000.
[21] M. S. Khomami, K. Jalilpoor, M. T. Kenari, and M. S. Sepasian, “Bi‐level network reconfiguration model to improve the resilience of distribution systems against extreme weather events,” IET Generation, Transmission & Distribution, vol. 13, no. 15, pp. 3302–3310, Jul. 2019, doi: https://doi.org/10.1049/iet-gtd.2018.6971.