[1] ع. کتابی, "استفاده از مبدل چند سطحی ماژولار با استفاده از روش کنترل پیشبین در سیستمهای فتوولتاییک متصل به شبکه," مجله مهندسی برق دانشگاه تبریز, 1397.
[2] ک. عباسیان, "افزایش بازده سلول خورشیدی GaAs مبتنی بر ساختار p-i-n باند میانی توسط نقاط کوانتومی InAs در ناحیه ذاتی آن," 1398.
[3] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature photonics, vol. 8, no. 7, pp. 506-514, 2014.
[4] G. Hodes and D. Cahen, "Perovskite cells roll forward," Nature Photonics, vol. 8, no. 2, pp. 87-88, 2014.
[5] J. Britt and C. Ferekides, "Thin‐film CdS/CdTe solar cell with 15.8% efficiency," Applied physics letters, vol. 62, no. 22, pp. 2851-2852, 1993.
[6] I. Repins et al., "19· 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor," Progress in Photovoltaics: Research and applications, vol. 16, no. 3, pp. 235-239, 2008.
[7] M. Graetzel, R. A. Janssen, D. B. Mitzi, and E. H. Sargent, "Materials interface engineering for solution-processed photovoltaics," Nature, vol. 488, no. 7411, pp. 304-312, 2012.
[8] J. Halls et al., "Efficient photodiodes from interpenetrating polymer networks," Nature, vol. 376, no. 6540, pp. 498-500, 1995.
[9] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, pp. 737-740, 1991.
[10] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[11] T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "High‐efficiency solar cell with earth‐abundant liquid‐processed absorber," Advanced materials, vol. 22, no. 20, pp. E156-E159, 2010.
[12] G. Li et al., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature materials, vol. 4, no. 11, pp. 864-868, 2005.
[13] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[14] H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, no. 1, p. 591, 2012.
[15] R. Siavash Moakhar et al., "Recent advances in plasmonic perovskite solar cells," Advanced science, vol. 7, no. 13, p. 1902448, 2020.
[16] C. Hu, M. Li, J. Qiu, and Y.-P. Sun, "Design and fabrication of carbon dots for energy conversion and storage," Chemical Society Reviews, vol. 48, no. 8, pp. 2315-2337, 2019.
[17] L. Janßen, H. Windgassen, D. Bätzner, B. Bitnar, and H. Neuhaus, "Silicon nitride passivated bifacial Cz-silicon solar cells," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1435-1439, 2009.
[18] A. Romeo, G. Khrypunov, S. Galassini, H. Zogg, and A. Tiwari, "Bifacial configurations for CdTe solar cells," Solar energy materials and solar cells, vol. 91, no. 15-16, pp. 1388-1391, 2007.
[19] J. Pang et al., "Preparation and characteristics of MoSe2 interlayer in bifacial Cu (In, Ga) Se2 solar cells," Physics Procedia, vol. 32, pp. 372-378, 2012.
[20] J. Park et al., "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, vol. 616, no. 7958, pp. 724-730, 2023.
[21] S. Gan, H. Sun, C. Li, D. Dou, and L. Li, "Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization," Science Bulletin, 2023.
[22] F. Fu et al., "Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications," Nature communications, vol. 6, no. 1, p. 8932, 2015.
[23] Y. Xiao, G. Han, J. Wu, and J.-Y. Lin, "Efficient bifacial perovskite solar cell based on a highly transparent poly (3, 4-ethylenedioxythiophene) as the p-type hole-transporting material," Journal of Power Sources, vol. 306, pp. 171-177, 2016.
[24] L. Fan et al., "Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells," ACS Applied Energy Materials, vol. 1, no. 4, pp. 1575-1584, 2018.
[25] Y. Li, J. Duan, Y. Zhao, and Q. Tang, "All-inorganic bifacial CsPbBr 3 perovskite solar cells with a 98.5%-bifacial factor," Chemical communications, vol. 54, no. 59, pp. 8237-8240, 2018.
[26] M. A. Truong et al., "Near-ultraviolet transparent organic hole-transporting materials containing partially oxygen-bridged triphenylamine skeletons for efficient perovskite solar cells," ACS Applied Energy Materials, vol. 4, no. 2, pp. 1484-1495, 2021.
[27] M.-A. Park et al., "Bifunctional graphene oxide hole-transporting and barrier layers for transparent bifacial flexible perovskite solar cells," ACS Applied Energy Materials, vol. 4, no. 9, pp. 8824-8831, 2021.
[28] J. Heo et al., "Highly Efficient Bifacial Color‐Tunable Perovskite Solar Cells," Advanced Optical Materials, vol. 10, no. 2, p. 2101696, 2022.
[29] M. Najafi et al., "Light‐Soak Stable Semitransparent and Bifacial Perovskite Solar Cells for Single‐Junction and Tandem Architectures," Solar RRL, vol. 6, no. 4, p. 2100621, 2022.
[30] L. Fan et al., "Enhanced photovoltaic output of bifacial perovskite solar cells via tailoring photoelectric balance in rear window layers with 1T-WS 2 nanosheet engineering," Materials Chemistry Frontiers, vol. 6, no. 15, pp. 2061-2071, 2022.
[31] A. Ali, J. H. Kang, J. H. Seo, and B. Walker, "Effect of plasmonic Ag nanoparticles on the performance of inverted perovskite solar cells," Advanced Engineering Materials, vol. 22, no. 3, p. 1900976, 2020.
[32] H. Zhu et al., "Preparation of TiO2 electron transport layer by magnetron sputtering and its effect on the properties of perovskite solar cells," Energy Reports, vol. 8, pp. 3166-3175, 2022.
[33] M. K. Hossain et al., "Photovoltaic performance investigation of Cs3Bi2I9-based perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks," Energy & Fuels, vol. 37, no. 10, pp. 7380-7400, 2023.
[34] Q. Dong et al., "Insight into perovskite solar cells based on SnO2 compact electron-selective layer," The Journal of Physical Chemistry C, vol. 119, no. 19, pp. 10212-10217, 2015.
[35] Y. Zhang, Z. Jiang, W. Zhang, L. Yan, C. Lu, and C. Ni, "Pre-crystallisation applied in sequential deposition approaches to improve the photovoltaic performance of perovskite solar cells," Journal of Alloys and Compounds, vol. 832, p. 153616, 2020.
[36] Y. Gong, Y. Dong, B. Zhao, R. Yu, S. Hu, and Z. a. Tan, "Diverse applications of MoO 3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies," Journal of Materials Chemistry A, vol. 8, no. 3, pp. 978-1009, 2020.
[37] A. Jangjoy and S. Matloub, "Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells," Optics Express, vol. 31, no. 12, pp. 19102-19115, 2023.
[38] P. K. Patel, "Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell," Scientific Reports, vol. 11, no. 1, p. 3082, 2021.
[39] N. Jaiswal, V. P. Singh, D. Kumari, and S. K. Pandey, "Performance Analysis of Triple‐Cation Mixed‐Halide Bifacial Perovskite Solar Cell with 17% Rear and 25% Front Efficiency," Energy Technology, vol. 12, no. 2, p. 2300639, 2024.
[40] A. Garrod and A. Ghosh, "A review of bifacial solar photovoltaic applications," Frontiers in Energy, vol. 17, no. 6, pp. 704-726, 2023.
[41] D. Du, C. Gao, H. Wang, and W. Shen, "Photovoltaic performance of bifacial perovskite/c-Si tandem solar cells," Journal of Power Sources, vol. 540, p. 231622, 2022.
[42] A. H. Duhis, M. Aljanabi, and M. S. S. Al-Kafaji, "Increasing photovoltaic system power output with white paint albedo–a scenario in Al-Mausaib City using PVSyst. software," International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 14, no. 2, pp. 1149-1159, 2023.