[1] Liu, L., Xing, J., and Ai, H.: Multi-view vehicle detection and tracking in crossroads. in Proceedings of the Asian Conference on Pattern Recognition (ACPR), pp. 608–612 (2011)
[2] Liu, L., Xing, J., Ai, H., and Ruan X.: Hand posture recognition using finger geometric feature. in IEEE International Conference on Pattern Recognition (ICPR), pp. 565–568 (2012)
[3] Emami, A., Dadgostar, F., Bigdeli, A., and Lovell, B.: Role of spatiotemporal oriented energy features for robust visual tracking in video surveillance. in IEEE International Conference on Advanced Video and Signal-Based Surveillance, pp. 349–354 (2012)
[4] Zhang, m., Xing, J., Gao, J., and Hu, W.: Robust visual tracking using joint scale-spatial correlation filters. in IEEE International Conference on Image Processing (ICIP) (2015)
[5] وحید آزادزاده، علی محمد لطیف، «دستهبندی ویژگیهای استخراج شده از پیشزمینه و پسزمینه تصویر برای ردیابی اهداف متحرک هوایی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، پاییز 1395
[6] عقیل عبیری، محمدرضا محزون، « ردیابی اهداف متحرک هوایی با استفاده از تخمین چگالی کرنل بر اساس الگوریتم فیلتر ذره»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 3، پاییز 1394.
[7] Guo, Q., Feng, W., Zhou, C., Pun, C.M., and Wu, B.: Structure-regularized compressive tracking with online data-driven sampling. in IEEE Transactions on Image Processing, pp. 5692-5705 (2017)
[8] Zhang, T., Liu, S., Ahuja, N., Yang, M.H. and Ghanem, B.: Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 111(2) pp. 171–190 (2015)
[9] Wang, N., Shi, J., Yeung, D.Y., and Jia, J.: Understanding and diagnosing visual tracking systems, in International Conference on Computer Vision (ICCV) (2015)
[10] Kristan, M., Matas, J., Leonardis, A., et al.: The visual object tracking VOT2015 challenge results. in International Conference on Computer Vision Workshops (ICCVW) (2015)
[11] Wang, L., Ouyang, W., Wang, X., and Lu, H.: STCT: Sequentially training convolutional networks for visual tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
[12] Ma, C., Huang, J.B., Yang, X., and Yang, M.H.: Hierarchical convolutional features for visual tracking. in International Conference on Computer Vision (ICCV) (2015)
[13] Hong, S., You, T., Kwak, S., and Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. in International Conference on Machine Learning (ICML) (2015)
[14] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., and Torr, P.H.: Fully-convolutional Siamese networks for object tracking. in European Conference on Computer Vision (ECCV Workshops) (2016)
[15] Cui, Y., Jiang, C., Wang, L., and Wu, G.: MixFormer: End-to-end tracking with iterative mixed attention. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogn tion (CVPR) (2022)
[16] Guo, D., Wang, J., Cui, Y., Wang, Z., and Chen, S.: SiamCAR: Siamese fully convolutional classification and regression for visual tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
[17] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., and Hu, W.: Distractor-aware Siamese networks for visual object tracking. in European Conference on Computer Vision (2018)
[18] Nam, H., and Han, B.: Learning multi-domain convolutional neural networks for visual tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
[19] Danelljan, M., Häger, G., Khan, F.S., and Felsberg, M.: Convolutional features for correlation filter based visual tracking. in International Conference on Computer Vision Workshops (ICCVW) (2015)
[20] Danelljan, M., Hager, G., Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. in: ICCV 2015 Workshop, pp. 58–66 (2015)
[21] Chen, K., and Tao, W.: Once for all: A two-flow convolutional neural network for visual tracking. in arxiv:1604.07507 (2016)
[22] Wang, G., Luo, C., Xiong, Z., and Zeng, W.: Spm-tracker: Series-parallel matching for real-time visual object tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[23] Danelljan, M., Bhat, G., Shahbaz Khan, F., and Felsberg, M.: ECO: Efficient convolution operators for tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
[24] Wu, Y., Lim, J., and Yang, M.H.: Object tracking benchmark. in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37(9), pp. 1834–1848 (2015)
[25] Zhu, H., Xue, M., et al.: Fast Visual Tracking with Siamese Oriented Region Proposal Network. in IEEE Signal Processing Letters, pp. 1437–1441 (2022)
[26] Wang, Q., Teng, Z., Xing, J., Gao, J., Hu, W., and Maybank, S.: Learning attentions: Residual attentional Siamese network for high performance online visual tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
[27] Wang, Q., Zhang, M., Xing, J., Gao, J., Hu, W., and Maybank, S.: Do not lose the details: Reinforced representation learning for high performance visual tracking. in International Joint Conference on Artificial Intelligence (IJCAI) (2018)
[28] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. in Conference and Workshop on Neural Information Processing Systems (NIPS) (2012)
[29] He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
[30] Fu, Z., Liu, Q., et al.: Stmtrack: Template-free visual tracking with space-time memory networks. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13774–13783 (2021)
[31] Yan, B., Peng, H., Wu, K., Wang, D., Fu, J., Lu, H.: Lighttrack: Finding lightweight neural networks for object tracking via one-shot architecture search. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15189 (2021)
[32] Kristan, M., Leonardis, A., Matas, J., et al.: The visual object tracking VOT2016 challenge results. in European Conference on Computer Vision (ECCV) (2016)
[33] Kristan, M., Leonardis, A., et al.: The sixth visual object tracking VOT2018 challenge results. in European Conference on Computer Vision (ECCV), pp. 3–53 (2018)
[34] Huang, L., Zhao, X., and Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2019)
[35] Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. in Computer Vision and Pattern Recognition (CVPR) (2008)
[36] Fan, J., Xu, W., Wu, Y., Gong, Y.: Human tracking using convolutional neural networks. in IEEE Transactions on Neural Networks 21(10), pp.1610-1623 (2010)
[37] Bagherzadeh, M.A., Yazdi, M.: Fast object tracking with long-term occlusions handling in dynamic scenes. in International Conference on Robotics and Mechatronics (ICRoM) (2014)
[38] Bolme, D.S., Beveridge, J.R., Draper, B.A., and Lui, Y.M.: Visual object tracking using adaptive correlation filters. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)
[39] Henriques, J.F., Caseiro, R., Martins, P., and Batista, J.: High-speed tracking with kernelized correlation filters. in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37(3), pp. 583–596 (2015)
[40] Bagherzadeh, M.A., and Yazdi, M.: Regularized least-square object tracking based on ℓ2, 1 minimization. in IEEE International Conference on Robotics and Mechatronics (ICROM) (2015)
[41] Hu, W., Wang, Q., et al.: DCFNet: Discriminant correlation filters network for visual tracking. in Journal of Computer Science and Technology, Doi :10.1007/s11390-023-3788-3 (2023)
[42] Danelljan, M., Bhat, G., Khan, F.S., and Felsberg, M.: Atom: Accurate tracking by overlap maximization. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[43] Tao, R., Gavves, E., Smeulders, A.W.M.: Siamese Instance Search for Tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
[44] Held, D., Thrun, S., and Savarese, S.: Learning to track at 100 fps with deep regression networks. in European Conference on Computer Vision (ECCV) (2016)
[45] Li, B., Yan, J., Wu, W., Zhu, Z., and Hu, X.: High performance visual tracking with Siamese region proposal network. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
[46] Lukezic, A., Matas, J., and Kristan, M.: D3S-a discriminative single shot segmentation tracker. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
[47] Voigtlaender, P., Luiten, J., Torr, P.H., and Leibe, B.: Siam R-CNN: Visual tracking by re-detection. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6578–6588 (2020)
[48] Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., and Yan, J.: SiamRPN++: Evolution of Siamese visual tracking with very deep networks. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4282–4291 (2019)
[49] Wang, Q., Zhang, L., Bertinetto L., et al.: Fast online object tracking and segmentation: A unifying approach. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[50] Goutam, B., Danelljan, M et al.: Learning discriminative model prediction for tracking. in Proceedings of the IEEE International Conference on Computer Vision, pp. 6182–6191 (2019)
[51] Zhao, F., et al.: Siamese Regression Tracking with Reinforced Template Updating. in IEEE Transactions on Image Processing, pp. 628–640 (2020)
[52] Jiang, Y., Song, X., et al.: Target-Cognisant Siamese Network for Robust Visual Object Tracking. Pattern Recognition Letters, vol. 163, pp. 129-135 (2022)
[53] Tang, C., et al. Learning spatial-frequency transformer for visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology (2023)
[54] Wang, N., Zhou, W., Wang, J., and Li, H.: Transformer meets tracker: Exploiting temporal context for robust visual tracking. in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 1571–1580 (2021)
[55] Cui, Y., Jiang, et al.: End-to-end tracking with iterative mixed attention. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618, (2022)
[56] Chen, X., Yan, B., Zhu, J., Wang, D., et al.: Transformer tracking. in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 8126–8135 (2021)
[57] Mayer, C., Danelljan, M., Paudel, D.P., and Gool, L.V.: Learning target candidate association to keep track of what not to track. in Proceedings of the IEEE International Conference on Computer Vision, (ICCV), pp. 13444–13454 (2021)
[58] Chen, Y., Wang, C.Y., Yang, C.Y., et al.: NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets. in arXiv:2211.06663, (2022)
[59] Hou, X., Lim, J., and Zhang, L.: Saliency detection: A spectral residual approach. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)
[60] Chen, P., et al. "Gridmask data augmentation." arXiv preprint arXiv:2001.04086 (2020)
[61] Kristan, M., Matas, J., Leonardis, A., et al.: The seventh visual object tracking vot2019 challenge results. in International Conference on Computer Vision Workshops (ICCVW) (2019)
[62] Kristan, M., Leonardis, A., et al.: The eighth visual object tracking VOT2020 challenge results. in European Conference on Computer Vision (ECCV) (2020)
[63] Javed, S., Danelljan, M., et al.: Object Tracking With Discriminative Filters and Siamese Networks: A Survey and Outlook. in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 5, pp. 6552-6574, doi: 10.1109/ TPAMI. 2022.3212594 (2023)
[64] Chen, Z., Zhong, B., Li, G., Zhang, S., and Ji, R.: Siamese box adaptive network for visual tracking. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)