[1] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siri- wong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases”, Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 580–591, 2011.
[2] B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic wo 3 nanowire array for highly sensitive no 2 detection”, Journal of Materials Chemistry, vol. 19, no. 16, pp. 2323–2327, 2009.
[3] Y. Wang, X. Jiang, and Y. Xia, “A solution-phase, precursor route to polycrystalline sno2 nanowires that can be used for gas sensing under ambient conditions”, Journal of the American Chemical Society, vol. 125, no. 52, pp. 16 176–16 177, 2003.
[4] H.-J. Song, X.-H. Jia, H. Qi, X.-F. Yang, H. Tang, and C.-Y. Min, “Flexible morphology-controlled synthesis of monodisperse α-fe 2 o 3 hierarchical hollow microspheres and their gas-sensing properties”, Journal of Materials Chemistry, vol. 22, no. 8, pp. 3508–3516, 2012.
[5] N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors”, Catalysis Surveys from Asia, vol. 7, no. 1, pp. 63–75, 2003.
[6] D. E. Williams, “Semiconducting oxides as gas-sensitive resistors”, Sensors and Actuators B: Chemical, vol. 57, no. 1-3, pp. 1–16, 1999.
[7] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, and N. Yamazoe, “Hierarchical α-fe2o3/nio composites with a hollow structure for a gas sensor”, ACS applied materials & interfaces, vol. 6, no. 15, pp. 12 031–12 037, 2014.
[8] T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, and M. Tiemann, “Ordered mesoporous in2o3: synthesis by structure replication and application as a methane gas sensor”, Advanced Functional Materials, vol. 19, no. 4, pp. 653–661, 2009.
[9] J. Chen, X. Pan, F. Boussaid, A. McKinley, Z. Fan, and A. Bermak, “Breath level acetone discrimination through temperature modulation of a hierarchical zno gas sensor”, IEEE sensors letters, vol. 1, no. 5, pp. 1–4, 2017.
[10] M. Righettoni, A. Tricoli, and S. E. Pratsinis, “Si: Wo3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis”, Analytical chemistry, vol. 82, no. 9, pp. 3581–3587, 2010.
[11] Y. Cao, H. Luo, and D. Jia, “Low-heating solid-state synthesis and excellent gas-sensing properties of α-fe2o3 nanoparticles”, Sensors and Actuators B: Chemical, vol. 176, pp. 618–624, 2013.
[12] F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldoni, and L. Sangaletti, “Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment”, Analyst, vol. 138, no. 24, pp. 7392– 7399, 2013.
[13] M. Penza, R. Rossi, M. Alvisi, G. Cassano, and E. Serra, “Functional characterization of carbon nanotube networked films functionalized with tuned loading of au nanoclusters for gas sensing applications”, Sensors and Actuators B: Chemical, vol. 140, no. 1, pp. 176–184, 2009.
[14] W.-D. Zhang, B. Xu, and L.-C. Jiang, “Functional hybrid materials based on carbon nanotubes and metal oxides”, Journal of Materials Chemistry, vol. 20, no. 31, pp. 6383–6391, 2010.
[15] P. Cheng, L. Lv, Y. Wang, B. Zhang, Y. Zhang, Y. Zhang, Z. Lei, and L. Xu, “Sno2/znsno3 double-shelled hollow microspheres based high- performance acetone gas sensor”, Sensors and Actuators B: Chemical, vol. 332, p. 129212, 2021.
[16] M. Liu, Z. Wang, P. Song, Z. Yang, and Q. Wang, “Flexible mx- ene/rgo/cuo hybrid aerogels for high performance acetone sensing at room temperature”, Sensors and Actuators B: Chemical, vol. 340, p. 129946, 2021.
[17] K. Rezaei and S. Nasirian, “A low-level acetone gas sensor based on n-type zno/p-type cuo composite nanostructure for the diagnosis of diabetes in dynamic situations”, Journal of Materials Science: Materials in Electronics, vol. 32, no. 4, pp. 5199–5214, 2021.
[18] S. Cao, N. Sui, P. Zhang, T. Zhou, J. Tu, and T. Zhang, “Tio2 nanostructures with different crystal phases for sensitive acetone gas sensors”, Journal of Colloid and Interface Science, vol. 607, pp. 357– 366, 2022.
[19] N. H. Hanh, L. Van Duy, C. M. Hung, C. T. Xuan, N. Van Duy, and N. D. Hoa, “High-performance acetone gas sensor based on pt–zn2sno4 hollow octahedra for diabetic diagnosis”, Journal of Alloys and Compounds, vol. 886, p. 161284, 2021.
[20] H. Zhu, A. A. Haidry, Z. Wang, and Y. Ji, “Improved acetone sensing characteristics of tio2 nanobelts with ag modification”, Journal of Alloys and Compounds, vol. 887, p. 161312, 2021.
[21] A. K. Vishwakarma, A. K. Sharma, N. K. Yadav, and L. Yadava, “Development of cds-doped tio2 nanocomposite as acetone gas sensor”, Vacuum, vol. 191, p. 110363, 2021.