A Low-Noise Low-Power Chopper Amplifier With 130dB CMRR and High SNR

Document Type : Original Article

Authors

Faculty of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran.

Abstract

This paper presents a low-power and low-noise chopper amplifier for biopotential signals. A two-stage structure is presented to achieve a high CMRR and SNR. These stages contain a folded cascode topology to obtain a low input noise and large input impedance; and a stage of two stacked cross-coupled folded cascode for CMRR and SNR intents. The structure consumes 1.27 µW from a 0.6 V power supply. The CMRR, SNR, Gain, and input-referred noise RMS respectively are 133 dB, 121.4 dB, 38 dB and 930nV/Hz in the Bandwidth of 0.01 kHz to 1 kHz. The NEF and PEF are 1.8 and 1.9 and input impedance is 2.5 GΩ with chopping frequency of 2kHz.

Keywords

Main Subjects


[1] Mondal, S., & Hall, D. A. (2017, May). An ECG chopper amplifier achieving 0.92 NEF and 0.85 PEF with AC-coupled inverter-stacking for noise efficiency enhancement. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE.
[2] Bijari, A., & Sheikhi, M. (2019). A 3.1-10.6 GHz Ultra-Wideband Low Noise Amplifier with Novel Input Matching Network. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 49(2), 517-529.
[3] Xu, J., Yazicioglu, R. F., Grundlehner, B., Harpe, P., Makinwa, K. A., & Van Hoof, C. (2011). A $160~\mu {\rm W} $8-Channel Active Electrode System for EEG Monitoring. IEEE Transactions on Biomedical circuits and systems, 5(6), 555-567.
[4] Nevalainen, T., Koivisto, T., & Pänkäälä, M. (2014, October). Subthreshold nano-watt front-end amplifier for wireless ECG applications. In 2014 NORCHIP (pp. 1-4). IEEE.
[5] Bai, W., & Zhu, Z. (2016). A 0.5-V power-efficient low-noise CMOS instrumentation amplifier for wireless biosensor. Microelectronics Journal, 51, 30-37.
[6] Fiori, F. (2016). On the susceptibility of chopper operational amplifiers to EMI. IEEE Transactions on Electromagnetic Compatibility, 58(4), 1000-1006.
[7] Steyaert, M. S., & Sansen, W. M. (1987). A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE journal of solid-state circuits, 22(6), 1163-1168.
[8] Song, S., Rooijakkers, M., Harpe, P., Rabotti, C., Mischi, M., van Roermund, A. H., & Cantatore, E. (2015). A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with a 1.41 power efficiency factor. IEEE.
transactions on biomedical circuits and systems, 9(2), 237-247.
[9] Majidzadeh, V., Schmid, A., & Leblebici, Y. (2011). Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Transactions on biomedical circuits and systems, 5(3), 262-271.
[10] Chen, Y. P., Blaauw, D., & Sylvester, D. (2014, June). A 266nW multi-chopper amplifier with 1.38 noise efficiency factor for neural signal recording. In 2014 Symposium on VLSI Circuits Digest of Technical Papers (pp. 1-2). IEEE.
[11] Vejdani, P., & Nabki, F. (2019). Dual-path and dual-chopper amplifier signal conditioning circuit with improved SNR and ultra-low power consumption for MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(6), 2253-2262.
[12] Hosseinisharif, S., Pourahmadi, M., & Shayesteh, M. R. (2021). An Active, Low-Power, 10Gbps, Current-based Transimpedance Amplifier in a Broadband Optical Receiver Front-End. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 51(1), 49-60.
[13] Pokamisas, S., Baxevanakis, D., & Sotiriadis, P. P. (2019, May). A 0.6 V, 700nW Chopper Capacitively-Coupled Instrumentation Amplifier for Biomedical Applications. In 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE.
[14] Assaad, R. S., & Silva-Martinez, J. (2009). The recycling folded cascode: A general enhancement of the folded cascode amplifier. IEEE Journal of Solid-State Circuits, 44(9), 2535-2542.
[15] Johns, D. A., & Martin, K. (2008). Analog integrated circuit design. John Wiley & Sons.
[16] Amourah, M. M., & Geiger, R. L. (2001, May). Gain and bandwidth boosting techniques for high-speed operational amplifiers. In ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196) (Vol. 1, pp. 232-235). IEEE.
[17] Wang, A., Calhoun, B. H., & Chandrakasan, A. P. (2006). Analog Circuits in Weak Inversion. Sub-threshold design for ultra low-power systems (Vol. 95). New York: Springer.
[18] Waltari, M. E., & Halonen, K. A. (2002). Circuit techniques for low-voltage and high-speed A/D converters (Vol. 709). Springer Science & Business Media.
[19] Baxevanakis, D., & Sotiriadis, P. P. (2017, May). A 1.8 V CMOS chopper four-quadrant analog multiplier. In 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE.
[20] Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584-1614.
[21] Chen, H., Zhang, L., & Wang, Y. (2021, May). A 2.8 nV/√ Hz Chopper Amplifier for Bridge Readout with Dual Ripple Reduction and Noise-Nonlinearity-Cancelling Loop. In 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-4). IEEE.
[22] Kim, H., Kwon, Y., You, D., Choi, H. W., Kim, S. H., Heo, H., ... & Ko, H. (2021). Low-noise chopper amplifier using lateral PNP input stage with automatic base current cancellation. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7), 2297-2301.
[23] Qu, T., Pan, Q., Zeng, X., Hong, Z., & Xu, J. (2022, April). A 1.8 GΩ-Input-Impedance 0.15 µV-Input-Referred-Ripple Chopper Amplifier with Local Positive Feedback and SAR-Assisted Ripple Reduction. In 2022 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-2). IEEE.
[24] Pham, X. T., Vu, T. K., Nguyen, T. D., & Pham-Nguyen, L. (2022). A 1.2-µW 41-dB Ripple Attenuation Chopper Amplifier Using Auto-Zero Offset Cancelation Loop for Area-Efficient Biopotential Sensing. Electronics, 11(7), 1149.
[25] Sajja, A., & Rooban, S. (2023). A chopper amplifier with a pseudo-MOS resistor-based tunable bandwidth for EEG applications. Microelectronics International, 40(3), 198-205.