کنترل پیش‌بین مدلِ داده‌محور مستقیم برای سیستم‌های خطی پارامتر متغیر چندوجهی در حضور نویز اندازه‌گیری

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی دکترا، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله، کنترل‌کننده پیش‌بینِ مدلِ داده‌محور برای سیستم‌های خطی پارامترمتغیر توسعه داده شده است. کنترل‌کننده‌های مدل-مبنا، به‌طور قابل توجهی وابسته به دقت مدل هستند. در مقابل، روش‌های داده‌محور یا جایگزین مدل شده یا اطلاعات دینامیکی آن را در طراحی وارد می‌کنند. در این مقاله، از رویکرد مستقیم در روش‌های داده‌محور برای مراحل مختلف طراحی کنترل‌کننده، منجمله پیش‌بینی رفتار آینده، استفاده می‌شود که در سال‌های اخیر توجه زیادی به آن جلب شده است. علاوه بر آن، با استفاده از یک چارچوب طراحی‌شده از قبل برای رویکردِ پیشنهادی، ضمانت‌های پایداری و بازگشت‌پذیری آن به‌عنوان اولین نوآوریِ این تحقیق ارائه شده است. در ادامه، چارچوبِ مبنای روش کنترل‌کننده پیش‌بینِ مدل داده‌محورِ مستقیم برای سیستم‌های LPV، توسعه داده‌شده است. صورت توسعه‌یافته جدید، با هدف توانمندسازی کنترل‌کننده در مقابله با نویز اندازه‌گیری، به‌عنوان نوآوری بعدی مقاله معرفی شده است. به‌منظور بررسی عملکرد روش پیشنهادی، شبیه‌سازی برروی موتور جریان مستقیم انجام‌شده است. نتایج شبیه‌سازی، نشان‌دهنده کارآمدی رویکرد ارائه‌شده در مقایسه با روش‌های مشابه است که اخیرا در مقالات گزارش شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Data-Driven Model Predictive Control for Polytopic Linear Parameter Varying Systems in Presence of Measurement Noise

نویسندگان [English]

  • Mohammad Mehdi Shahsavand 1
  • M. Farrokhi 2
1 Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran. | Centre of Excellence for Modelling and Control of Complex Systems, Iran University of Science and Technology, Tehran, Iran.
2 Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

In this paper, an extension for Data-Driven Model Predictive Control for Linear Parameter Varying systems is presented. Model-based controllers are highly dependent on model precision. On the other hand, data-driven methods are either replaced with the model or import its dynamic data into the design. Throughout this paper, direct data-driven approaches, which have gained considerable attention in recent years, are used in designing different parts of the controller, including future predictions. In addition, the stability and recursive feasibility guarantees are presented as the first novelty of this research with respect to a prior platform for data-driven approach. Furthermore, the base platform of direct DD-MPC for LPV systems is extended. The new developed form with the goal of robustness against measurement noise is defined as the next novelty of this paper. In order to check the performance of the proposed method, simulations on DC motor are applied. The results show effectiveness of the proposed approach as compared with similar approaches reported in the literature.

کلیدواژه‌ها [English]

  • Model Predictive Control
  • Data-Driven Control
  • Linear Parameter Varying System
  • Measurement Noise
[1] Z. S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Information Sciences, vol. 235, no. 1, pp. 3-35, 2013.
[2] J. B. Rawlings, D. Q. Mayne and M. Diehl, Model Predictive Control: Theory, Computation, and Design, first ed., Nob Hill Publishing Madison, California, 2017.
[3] L. Ljung, System Identification: Theory for Users, first ed., Pretice-Hall, New Jersey, 1987.
[4] T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control-taming Nonlinear Dynamics and Turbulence, Springer, Cham, Switzerland, 2017
[5] Hou, R. Chi and H. Gao, “An overview of dynamic-linearization-based data-driven control and applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 4076-4090, 2016.
[6] J. C. Willems, P. Rapisarda, I. Markovsky and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325-329, 2005.
[7] I. Markovsky, J. C. Willems, S. Van Huffel and B. De Moor, Exact and Approximate Modeling of Linear Systems: A Behavioral Approach, SIAM, Pennsylvania, USA, 2006.
[8] I. Markovsky and P. Rapisarda, “Data-driven simulation and control,” International Journal of Control, vol. 81, no. 12, pp. 1946-1959, 2008.
[9] J. L. Proctor, S. L. Brunton and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142-161, 2016.
[10] S. Peitz, S. E. Otto and C. W. Rowley, “Data-driven model predictive control using interpolated Koopman generators,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 3, pp. 2162-2193, 2020.
[11] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, UK, 2019.
[12] J. R. Salvador, D. M. de la Pena, T. Alamo and A. Bemporad, “Data-based predictive control via direct weight optimization,” IFAC Proceedings Volumes, vol. 51, no. 20, pp. 356-361, 2018.
[13] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Data-driven model predictive control with stability and robustness guarantees,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1702-1717, 2020.
[14] J.Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Robust constraint satisfaction in data-driven MPC,” 59th IEEE Conference on Decision and Control (CDC), Jeju, South Korea, 2020.
[15] A. Koch, J. Berberich, J. Köhler and F. Allgöwer, “Determining optimal input–output properties: A data-driven approach,” Automatica, vol. 134, no. 7, pp. 109906, 2021.
[16] J. Bongard, J. Berberich, J. Köhler and F. Allgöwer, “Robust stability analysis of a simple data-driven model predictive control approach,” arXiv preprint, arXiv: 2103.00851, 2021.
[17] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “On the design of terminal ingredients for data-driven MPC,” arXiv preprint, arXiv: 2101.05573, 2021.
[18] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Data-driven tracking MPC for changing setpoints,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6923-6930, 2020.
[19] J. Berberich and F. Allgöwer, “A trajectory-based framework for data-driven system analysis and control,” European Control Conference, St. Petersburg, Russia, 2020.
[20] J. Berberich, C. W. Scherer and F. Allgöwer, “Combining prior knowledge and data for robust controller design,” arXiv preprint, arXiv: 2009.05253, 2020.
[21] K. Y. Chee, T. Z. Jiahao and M. A. Hsieh, “KNODE-MPC: A knowledge-based data-driven predictive control framework for aerial robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2819-2826, 2022.
[22] M. R. Pappu, N. Mohajer and S. Nahavandi, “Human-tailored data-driven control system of autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 2485-2500, 2022.
[23] P. Schmitz, T. Faulwasser and K. Worthmann, “Willems’ fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC,” IEEE Control Systems Letters, vol. 6, no. 1, pp. 1-8, 2022.
[24] J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying Systems with Applications, first ed., Springer Science & Business Media, London, 2012.
[25] R. Tóth, J. C. Willems, P. S. C. Heuberger and P. M. J. Van den Hof, “The behavioral approach to linear parameter-varying systems,” IEEE Transactions on Atomatic Control, vol. 56, no. 11, pp. 2499-2514, 2011.
[26] R. Tóth, Modeling and identification of linear parameter-varying systems, first ed., Springer Verlag, Berlin, 2010.
[27] C. Verhoek, R. Tóth, S. Haesaert and A. Koch, “Fundamental lemma for data-driven analysis of linear parameter-varying systems,” 60th IEEE Conference on Decision and Control (CDC), Austin Texas, USA, 2021.
[28] P. B. Cox, R. Tóth, “Linear parameter-varying subspace identification: A unified framework,” Automatica, vol. 123, no. 1, pp. 1-14, 2021.
[29] C. Verhoek, H. S. Abbas, R. Tóth and S. Haesaert, “Data-driven predictive control for linear parameter-varying systems,” IFAC-PapersOnLine, vol. 54, no. 8, pp. 101-108, 2021.
[30] C. Cai and A. R. Teel, “Input–output-to-state stability for discrete-time systems,” Automatica, vol. 44, no. 2, pp. 326-336, 2008.