[1] Z. S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Information Sciences, vol. 235, no. 1, pp. 3-35, 2013.
[2] J. B. Rawlings, D. Q. Mayne and M. Diehl, Model Predictive Control: Theory, Computation, and Design, first ed., Nob Hill Publishing Madison, California, 2017.
[3] L. Ljung, System Identification: Theory for Users, first ed., Pretice-Hall, New Jersey, 1987.
[4] T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control-taming Nonlinear Dynamics and Turbulence, Springer, Cham, Switzerland, 2017
[5] Hou, R. Chi and H. Gao, “An overview of dynamic-linearization-based data-driven control and applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 4076-4090, 2016.
[6] J. C. Willems, P. Rapisarda, I. Markovsky and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325-329, 2005.
[7] I. Markovsky, J. C. Willems, S. Van Huffel and B. De Moor, Exact and Approximate Modeling of Linear Systems: A Behavioral Approach, SIAM, Pennsylvania, USA, 2006.
[8] I. Markovsky and P. Rapisarda, “Data-driven simulation and control,” International Journal of Control, vol. 81, no. 12, pp. 1946-1959, 2008.
[9] J. L. Proctor, S. L. Brunton and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142-161, 2016.
[10] S. Peitz, S. E. Otto and C. W. Rowley, “Data-driven model predictive control using interpolated Koopman generators,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 3, pp. 2162-2193, 2020.
[11] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, UK, 2019.
[12] J. R. Salvador, D. M. de la Pena, T. Alamo and A. Bemporad, “Data-based predictive control via direct weight optimization,” IFAC Proceedings Volumes, vol. 51, no. 20, pp. 356-361, 2018.
[13] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Data-driven model predictive control with stability and robustness guarantees,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1702-1717, 2020.
[14] J.Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Robust constraint satisfaction in data-driven MPC,” 59th IEEE Conference on Decision and Control (CDC), Jeju, South Korea, 2020.
[15] A. Koch, J. Berberich, J. Köhler and F. Allgöwer, “Determining optimal input–output properties: A data-driven approach,” Automatica, vol. 134, no. 7, pp. 109906, 2021.
[16] J. Bongard, J. Berberich, J. Köhler and F. Allgöwer, “Robust stability analysis of a simple data-driven model predictive control approach,” arXiv preprint, arXiv: 2103.00851, 2021.
[17] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “On the design of terminal ingredients for data-driven MPC,” arXiv preprint, arXiv: 2101.05573, 2021.
[18] J. Berberich, J. Köhler, M. A. Müller and F. Allgöwer, “Data-driven tracking MPC for changing setpoints,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6923-6930, 2020.
[19] J. Berberich and F. Allgöwer, “A trajectory-based framework for data-driven system analysis and control,” European Control Conference, St. Petersburg, Russia, 2020.
[20] J. Berberich, C. W. Scherer and F. Allgöwer, “Combining prior knowledge and data for robust controller design,” arXiv preprint, arXiv: 2009.05253, 2020.
[21] K. Y. Chee, T. Z. Jiahao and M. A. Hsieh, “KNODE-MPC: A knowledge-based data-driven predictive control framework for aerial robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2819-2826, 2022.
[22] M. R. Pappu, N. Mohajer and S. Nahavandi, “Human-tailored data-driven control system of autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 2485-2500, 2022.
[23] P. Schmitz, T. Faulwasser and K. Worthmann, “Willems’ fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC,” IEEE Control Systems Letters, vol. 6, no. 1, pp. 1-8, 2022.
[24] J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying Systems with Applications, first ed., Springer Science & Business Media, London, 2012.
[25] R. Tóth, J. C. Willems, P. S. C. Heuberger and P. M. J. Van den Hof, “The behavioral approach to linear parameter-varying systems,” IEEE Transactions on Atomatic Control, vol. 56, no. 11, pp. 2499-2514, 2011.
[26] R. Tóth, Modeling and identification of linear parameter-varying systems, first ed., Springer Verlag, Berlin, 2010.
[27] C. Verhoek, R. Tóth, S. Haesaert and A. Koch, “Fundamental lemma for data-driven analysis of linear parameter-varying systems,” 60th IEEE Conference on Decision and Control (CDC), Austin Texas, USA, 2021.
[28] P. B. Cox, R. Tóth, “Linear parameter-varying subspace identification: A unified framework,” Automatica, vol. 123, no. 1, pp. 1-14, 2021.
[29] C. Verhoek, H. S. Abbas, R. Tóth and S. Haesaert, “Data-driven predictive control for linear parameter-varying systems,” IFAC-PapersOnLine, vol. 54, no. 8, pp. 101-108, 2021.
[30] C. Cai and A. R. Teel, “Input–output-to-state stability for discrete-time systems,” Automatica, vol. 44, no. 2, pp. 326-336, 2008.