Terahertz Transparent Plasmonic Waveguide Nanofilter Based on Monolayer MoS2 Ring Resonator

Document Type : Original Article


Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran


In this paper, the structure of a plasmonic waveguide nanofilter based on monolayer MoS2 ring resonator is proposed and investigated. The structure performance is for a part of terahertz frequencies. Due to the low absorption and reflection of monolayer MoS2, considerable wave transmission and as a result, transparency, is provided. Filtering response caused by the proposed waveguide filter is resulted by the resonator which makes possible the coupling of the input and output nanoribbon waveguides. The structure operation has been simulated using the numerical method of finite difference time domain. The values of coupling efficiency, bandwidth at half of maximum, and quality factor, in operating wavelength of 1255 μm are respectively 0.78, 162 μm, and 7.7. The operating wavelength complies with the second resonance mode of the resonator. Also, the sensitivity of various structural indices in respect to manufacturing telorance is investigated. The proposed structure can have exnetsive application as a transparent electrode in photonic integrated circuits.


Main Subjects

[1] حامد محمدی نعمت آباد، احسان زارعیان جهرمی، و راحله بصیری، »طراحی و استخراج مدل مداری یک فیلتر پهن باند بر پایه سطح انتخاب‌گر فرکانس برای کاربردهای ترا هرتز«، مجله مهندسی برق تبریز، جلد 50، شماره 2، صفحات 865-873، 1399.
[2] سجاد راستی، سامیه مطلوب، و علی رستمی، »مدل‌سازی و امکان‌سنجی شناسایی ریزگردهای آلاینده هوا مبتنی بر طیف‌سنجی ترا هرتز در حوزه زمان«، مجله مهندسی برق تبریز، جلد 47، شماره 4، صفحات 1421-1430، 1396.
[3] Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging”, Trends in Biotechnology, vol. 34, no. 10, pp. 810-824, 2016.
[4] Matsumoto, I. Watanabe, A. Kasamatsu, Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography”, Nature Electronics, vol. 3, pp. 122-129, 2020.
[5] Y. Deng, X.H. Deng, F.H. Su, N.H. Liu, J.T. Liu, “Broadband ultra-high transmission of terahertz radiation through monolayer MoS2”, Journal of Applied Physics, vol. 118, no. 224304, pp. 1-5, 2015.
[6] Singh, H. Kang, H. Shin, J.Y. Park, H. Seo, “Highly transparent conducting two-dimensional electron gas channel in ultrathin heterostructures for flexible optoelectronic device applications”, Applied Surface Science, vol. 580, p. 152266, 2022.
[7] Wang, Z. Wang, J. Yang, C. Xu, Q. Zhang, Z. Peng, “Ionic gels and their applications in stretchable electronics”, Macromolecular Rapid Communications, vol. 39, no. 1800246, pp. 1-17, 2018.
[8] Qiu, L.Y.M. Tobing, J. Tong, Y. Xie, Z. Xu, P.N. Ni, D.H. Zhang, “Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection”, Optical and Quantum Electronics, vol. 43, no. 203, 2016.
[9] N. Dattoli, W.D. Lu, “ITO nanowires and nanoparticles for transparent films”, MRS Bulletin, vol. 36, no. 10, pp. 782-788, 2011.
[10] Chen, Y.Y. Yue, S.R. Wang, N. Zhang, J. Feng, H.B. Sun, “Graphene as transparent and conductive electrode for organic optoelectronic devices”, Advanced Electronic Materials, vol. 5, no. 10, p. 1900247, 2019.
[11] Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials”, Nature Nanotechnology, vol. 6, pp. 630-634, 2011.
[12] H. Lui, A.J. Frenzel, D.V. Pilon, Y.H. Lee, X. Ling, G.M. Akselrod, J. Kong, N. Gedik, “Trion-induced negative photoconductivity in monolayer MoS2”, Physical Review Letters, vol. 113, no. 16, p. 166801, 2014.
[13] Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves”, IEEE Photonics Journal, vol. 8, no. 6, p. 5502207, 2016.
[14] G. Lee, S.J. Yoo, T.H. Kim, Q.H. Park, “Large-area plasmon enhanced two-dimensional MoS2”, Nanoscale, vol. 9, pp. 16244-16248, 2017.
[15] Li, H. Lu, Y. Li, S. Shi, Z. Yue, J. Zhao, “Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle”, Nanophotonics, vol. 11, no. 5, pp. 995-1001, 2022.
[16] Zhuang, F. Kong, K. Li, S. Sheng, “Plasmonic bandpass filter based on graphene nanoribbon”, Applied Optics, vol. 54, no. 10, pp. 2558-2564, 2015.
[17] Deng, Y. Yan, Y. Xu, “Tunable flat-top bandpass filter based on coupled resonators on a graphene sheet”, IEEE Photonics Technology Letters, vol. 27, no. 11, pp. 1161-1164, 2015.
[18] Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator”, Nature, vol. 474, pp. 64-67, 2011.
[19] Nakamura, K. Sekiya, S. Matano, Y. Shimura, Y. Nakade, K. Nakagawa, Y. Monnai, H. Maki, “High-speed and on-chip optical switch based on a graphene microheater”, ACS Nano, vol. 16, no. 2, pp. 2690-2698, 2022.
[20] Correas-Serrano, J.S. Gomez-Diaz, J. Perruisseau-Carrier, A. Alvarez-Melcon, “Graphene based plasmonic tunable low-pass filters in the terahertz band”, IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp. 1145-1153, 2014.
[21] Dolatabady, N. Granpayeh, “Graphene based far-infrared junction circulator”, IEEE Transactions on Nanotechnology, vol. 18, pp. 200-207, 2019.
[22] Dolatabady, N. Granpayeh, M. Abedini, “Frequency-tunable logic gates in graphene nano-waveguides”, Photonic Network Communications, vol. 39, no. 3, pp. 187-194, 2020.
[23] S. Chu, C.H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays”, Applied Physics Letters, vol. 102, no. 23, p. 231107, 2013.
[24] He, X. Zhang, Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI”, Optics Express, vol. 21, no. 25, pp. 30664-30673, 2013.
[25] Nikitin, P. Alonso-Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L.E. Hueso, F.H.L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators”, Nature Photonics, vol. 10, no. 4, pp. 239-243, 2016.
[26] Fei, M. Goldflam, J.S. Wu, S. Dai, M. Wagner, A. McLeod, M.K. Liu, K.W. Post, S. Zhu, G.C.A.M. Janssen, “Edge and surface plasmons in graphene nanoribbons”, Nano Letters, vol. 15, no. 12, pp. 8271-8276, 2015.
[27] Robert, N. Dissanayake, P.C. Ku, “Plasmonic nanostructures for transparent photovoltaic facades”, 37th IEEE Photovoltaic Specialists Conferences, Seattle, WA, USA, 2011.
[28] Sourav, Z. Li, Z. Huang, V.D. Botcha, C. Hu, J.P. Ao, Y. Peng, H.C. Kuo, J. Wu, X. Liu, K.W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure”, Advanced Optical Materials, vol. 6, no. 20, p. 1800461, 2018.
[29] E. Babicheva, A. Boltasseva, A.V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators”, Nanophotonics, vol. 4, pp. 165-185, 2015.
[30] Xu, J. Liu, Q. Wang, R. Hui, Z. Chen, V.A. Maroni, J. Wu, “Plasmonic graphene transparent conductors”, Advanced Optical Materials, vol. 24, pp. 71-76, 2012.
[31] K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song, N. Liu, I. Omkaram, B. Yoo, S. Ju, S. Kim, M.S. Oh, “High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics”, AIP Advances, vol. 6, p. 055026, 2016.
[32] S. Sachidanand, M.M. Sreelal, R. Sreedharan, G. Viswan, M. Mohan, S. Gautam, R.K. Singh, K. Bhattacharjee, “MoS2 nanostructures as transparent material: Optical transmittance measurements”, Materials Today: Proceedings, vol. 26, pp. 104-107, 2020.
[33] Sharma, P. Aggarwal, A. Singh, S. Kaushik, R. Singh, “Flexible, transparent, and broadband trilayer photodetectors based on MoS2/Ws2 nanostructures”, ACS Applied Nano Materials, vol. 5, no. 9, pp. 13637-13648, 2022.
[34] Yoo, S.L. Choi, S.J. Park, K.T. Lee, S. Lee, M.S. Oh, J. Heo, H.J. Park, “Flexible and wavelength-selective MoS2 phototransistors with monolithically integrated transmission color filters”, Scientific Reports, vol. 7, no. 40945, pp. 1-7, 2017.
[35] Yan, L. Zhu, Y. Zhou, Y.E, L. Wang, X. Xu, “Dielectric property of MoS2 crystal in terahertz and visible regions”, Applied Optics, vol. 54, no. 22, pp. 6732-6736, 2015.
[36] A.K. Othman, C. Guclu, F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption”, Optics Express, vol. 21, no. 6, pp. 7614-7632, 2013.
[37] T. Liu, N.H. Liu, L. Wang, X.H. Deng, F.H. Su, “Gate-tunable nearly total absorption in graphene with resonant metal back reflector”, Europhysics Letters, vol. 104, p. 57002, 2013.
[38] A. Kabir, Y. Yoon, J.R. Knab, J.Y. Chen, A.G. Markelz, J.L. Reno, Y. Sadofyev, S. Johnson, Y.H. Zhang, J.P. Bird, “Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems”, Applied Physics Letters, vol. 89, p. 132109, 2006.
[39] Madelung, “Semiconductors: Basic Data”, 2nd Ed. Springer, Berlin, pp. 109-117, 1996.
[40] Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity”, Nano Energy, vol. 23, pp. 89-96, 2016.
[41] Jia, D. Wu, E. Wu, J. Guo, Z. Zhao, Z. Shi, T. Xu, X. Huang, Y. Tian, X. Li, “A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity”, Journal of Materials Chemistry C, vol. 7, pp. 3817-3821, 2019.
[42] Reza Khan, G.S. Choi, “Analysis and optimization of four-coil planar magnetically coupled printed spiral resonators”, Sensors, vol. 16, no. 1219, pp. 1-24, 2016.
[43] Feng, Y. Liu, Y. Shi, X. Wang, D. Dong, “An ultra-compact tunable intersection structure based on graphene nanoribbon”, Journal of Physics D: Applied Physics, vol. 50, no. 18, p. 185101, 2017.
[44] Wang, X. Zhang, X. Yuan, J. Teng, “Optical coupling of surface plasmons between graphene sheets”, Applied Physics Letters, vol. 100, no. 13, p. 131111, 2012.
[45] Ebnonnasir, B. Narayanan, S. Kodambaka, C.V. Ciobanu, “Tunable MoS2 bandgap in MoS2-graphene heterostructures”, Applied Physics Letters, vol. 105, p. 031603, 2014.
[46] O.F. Carvalho, J.R. Mejia-Salazar, “Plasmonics for telecommunications applications”, Sensors, vol. 20, no. 2488, pp. 1-20, 2020.
[47] M. Fujishima, “Future of 300 GHz band wireless communications and their enabler, CMOS transceiver technologies”, Japanese Journal of Applied Physics, vol. 60, no. SB0803, pp. 1-9, 2021.