[1] M. Masadeh, O. Hasan, S. Tahar, "Using machine learning for quality configurable approximate computing", Design, Automation & Test in Europe Conference & Exhibition, pp. 1575-1578, 2019.
[2] Y. Safaei Mehrabani, M. Eshghi, "Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 11, pp. 3268-3281, 2016.
[3] Q. Xu, T. Mytkowicz, N. S. Kim, "Approximate computing: asurvey", IEEE Design & Test, vol. 33, no. 1, pp. 8-22, 2016.
[4] K. S. Jitendra, A. Srinivasulu, B. P. Singh, "A new low-power full-adder cell for low voltage using CNTFETs", 9th International Conference on Electronics, Computers and Artificial Intelligence, pp. 1-5, 2017.
[5] M. Moradi, M., R. F. Mirzaee, K. Navi, "New current-mode multipliers by CNTFET-based n-valued binary converters", IEICE Transactions on Electronics, vol. 99, no. 1, pp. 100-107, 2016.
[6] محسن شاطر مفیدی، رضا فقیه میرزایی، «طراحی و بررسی یک جمعکننده با مسیر فرعی رقم نقلی در فناوری آتوماتای کوانتومی سلولی»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 4، صفحات 1673-1682، 1399.
[7] J. Appenzeller, "Carbon nanotubes for high-performance electronics—progress and prospect", Proceedings of the IEEE, vol. 96, no. 2, pp. 201-211, 2008.
[8] Y. Safaei Mehrabani, M. Eshghi, "High-speed, high-frequency and low-PDP, CNFET full adder cells", Journal of Circuits, Systems and Computers (JCSC), vol. 24, no. 09, p.1550130, 2015.
[9] G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, "Modern microprocessor built from complementary carbon nanotube transistors", Nature, vol. 572, no. 7771, pp. 595-602, 2019.
[10] S. Lin, Y.-B. Kim, F. Lombardi, "CNTFET-based design of ternary logic gates and arithmetic circuits", IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 217-225, 2009.
[11] الهام نیک بخت بیدگلی، داریوش دیدبان، «بررسی عملکرد مالتیپلکسر سه ارزشی مبتنی بر ترانزیستورهای اثر میدان نانولوله کربنی»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 2، صفحات 943-953، 1399.
[12] S. Yamacli, M. Avci, "Accurate SPICE compatible CNT interconnect and CNTFET models for circuit design and simulation", Mathematical and Computer Modelling, vol. 58, no. 1-2, pp. 368-378, 2013.
[13] S. Vidhyadharan, S. S. Dan, "An efficient ultra-low-power and superior performance design of ternary half adder using CNFET and gate-overlap TFET devices", IEEE Transactions on Nanotechnology, vol. 20, pp. 365-376, 2021.
[14] A. Raychowdhury, K. Roy, "Carbon-nanotube-based voltage-mode multiple-valued logic design", IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp. 168-179, 2005.
[15] S. A. Pon, V. Jeyalakshmi, "Analysis of switching activity in various implementation of combinational circuit," 6th International Conference on Advanced Computing and Communication Systems, pp. 115-121, 2020.
[16] R. Mehrotra, E. Popovici, K. L. Man, M. Schellekens, "Power reduction and technology mapping of digital circuits using AND-Inverter Graphs", 27th International Conference on Microelectronics Proceedings, pp. 295-298, 2010.
[17] A. P. Chandrakasan, R. W. Brodersen, "Minimizing power consumption in digital CMOS circuits", Proceedings of the IEEE, vol. 83, no. 4, pp. 498-523, 1995.
[18] P. J. Edavoor, S. Raveendran, A. D. Rahulkar, "Approximate multiplier design using novel dual-stage 4: 2 compressors", IEEE Access, vol. 8, pp. 48337-48351, 2020.
[19] Y. Safaei Mehrabani, R. F. Mirzaee, Z. Zareei, S. M. Daryabari, "A novel high-speed, low-power CNTFET-based inexact full adder cell for image processingapplication of motion detector", Journal of Circuits, Systems, and Computers, vol. 26, no. 5, pp. 1750082-1-1750082-15, 2017.
[20] C. Goyal, J. S. Ubhi, B. Raj, "A low leakage TG–CNTFET–based inexact full adder for low power image processing applications", International Journal of Circuit Theory and Applications, vol. 47, no. 9, pp. 1446-1458, 2019.
[21] S. Salavati, M. H. Moaiyeri, K. Jafari, "Ultra-efficient nonvolatile approximate full-adder with spin-hall-assisted MTJ cells for in-memory computing applications", IEEE Transactions on Magnetics, vol. 57, no. 5, pp. 1-11, May 2021.
[22] M. Mirzaei, S. Mohammadi, "Process variation-aware approximate full adders for imprecision-tolerant applications", Computers & Electrical Engineering, vol. 87, p. 106761, 2020.
[23] Z. Zareei, M. Bagherizadeh, M. H. Shafiabadi, Y. Safaei Mehrabani, "Design of efficient approximate 1-bit full adder cells using CNFET technology applicable in motion detector systems", Microelectronics Journal, vol. 108, pp. 1-13, 2021.
[24] Z. Yang, R. Lv, X. Li, J. Wang, J. Yang, "Approximate computing based low power image processing architecture for intelligent satellites", 11th EAI International Conference in Wireless and Satellite Systems, pp. 351-363, 2021.
[25] S. E. Fatemieh, S. S. Farahani, M. R. Reshadinezhad, "LAHAF: low-power, area-efficient, and high-performance approximate full adder based on static CMOS", Sustainable Computing: Informatics and Systems, vol. 30, p. 100529, 2021.
[26] A. Mohammadi, M. M. Ghanatghestani, A. S. Molahosseini, Y. Safaei Mehrabani, "High-performance and energy-area efficient approximate full adder for error tolerant applications", ECS Journal of Solid State Science and Technology, vol. 11, no. 8, p. 081010, 2022.
[27] محمدرضا رشادینژاد، سید عرفان فاطمیه، زهرا داوری شلمزاری، «طراحی و بهینهسازی یک تمام جمعکننده تقریبی مبتنی بر ترانزیستورهای نانولوله کربنی و بررسی کاربرد آن در پردازش تصویر دیجیتال»، هوش محاسباتی در مهندسی برق، جلد 11، شماره 3، صفحات 36-25، 1399.
[28] A. Mohammadi, M. M. Ghanatghestani, A. S. Molahosseini, Y. Safaei Mehrabani, "Image processing with high-speed and low-energy approximate arithmetic circuit", Sustainable Computing: Informatics and Systems, vol. 36, pp. 1-15, 2022.
[29] Home of the electric VLSI design system website, Available online at: http://www.staticfreesoft.com/index.html
[30] J. Huang, M. Zhu, P. Gupta, S. Yang, S. M. Rubin, G. Garret, J. He, "A CAD tool for design and analysis of CNFET circuits", IEEE International Conference on Electron Devices and Solid-State Circuits, pp. 1-4, 2010.
[31] J. Huang, M. Zhu, S. Yang, P. Gupta, W. Zhang, S. M. Rubin, G. Garreton, J. He, "A physical design tool for carbon nanotube field-effect transistor circuits", ACM Journal on Emerging Technologies in Computing Systems, vol. 8, no. 3, pp. 1-20, 2012.
[32] J. Deng, H.-S. P. Wong, "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region", IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3186-3194, 2007.
[33] J. Deng, H.-S. P. Wong, "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking", IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3195-3205, 2007.
[34] S. Goel, A. Kumar, M. A. Bayoumi, "Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 12, pp. 1309-1321, 2006.
[35] T. Y. Hsieh, Y. H. Peng, K. C. Cheng, T. A. Cheng, "Error-tolerability enhancement via bit inversion and median filtering for single-bit errors in image processing circuits", Microsystem Technologies, vol. 24, no. 1, pp. 59-69, 2018.