nvestigation of the Effect of Wind Power Plant Control Modes on the Phenomenon of Fault-Induced Delayed Voltage Recovery(FIDVR)

Document Type : Original Article

Authors

Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

 In areas where the motor load is the predominant load, when the short circuit occurs, the speed of the motors decreases and their power reactive consumption increases, which causes some delays in voltage recovery after fault clearance. This delay can cause operation of protection systems and load shedding. Fault-Induced Delayed Voltage Recovery is a phenomenon in which the voltage level does not reach the pre-fault value immediately after the fault is cleared. If the Voltage recovery delay is significant, the wind power plant will be disconnected from the power system, which causes other problems in the power system. The purpose of this paper is to evaluate the effect of different wind power plant controls on voltage recovery delay. Wind power plant modeling is based on IEC61400-27-1 standard. Also in this paper the effect of location of wind power plant and the ability to Low Voltage Rid Through of wind power plant is considered. All the simulations are performed in DIgSILENT PowerFactory 2021 software.

Keywords


[1] W. Wang. M. Diaz-Aguilo, K. B. Mak, F.de Lenon, D. Czarkowski, and R. Uosef, “Time series power flow framework for analysis of FIDVR using linear reression,”, IEEE Transaction on Power Delivery, 2018.
[2] NERC Transmission Issues Subcommittee and System Protection and Control Subcommitte, “A technical reference paper fault-delayed voltage recovery,” June 2009.
[3] M.Glavic, D. Novosel, E. Heredia, D. Kosterev, A. Salazar, F. Habibi-Ashrafi, and M.Donnelly, “See it fast to keep calm: Real-Time voltage control under stressed conditions,” IEEE Power and Energy Magazine., vol. 10, pp. 43-55, July 2012.
[4] E. Hajipour, H. Saber, N. Farzin, et al, “An Improved Aggregated Model of  Air Conditioners for FIDVR Studies,” IEEE Transaction on Power Systems, vol. 35, pp. 1-2, March 2020.
[5] J. D. Glidewell and M.Y. Patel, “Effect of high speed reclosing on fault induced delayed voltage recovery,” 2012 IEEE Power and Energy Society General Meeting, pp. 1-6, 2012.
[6] S. M. Halpin, K. A. Harley, R. A. Jones, L. y. Taylor, “Slop-Permissive Under-Voltage Load Shed Relay for Delayed Voltage Recovery Mitigation,” IEEE Transaction on Power Systems, vol. 23, pp. 1211-1216, August 2008.
[7] B. Hua and V. Ajjarapu, “A Novel Online Load Shedding Strategy for Mitigating Fault-Induced Delayed Voltage Recovery,” IEEE Transaction on Power Systems, vol. 26, pp. 294-304, February 2011.
[8] Y. Zhang, Y. Xu, Z. Y. Dong, and P. Zhang, “Real-Time assement of  faul-induced delayed voltage recovery: a probabilistic self-addaptive data-driven method,” IEEE transaction on Smart Grid, vol. 10, pp. 2485-2494, May 2019.
[9] J. D. Pinzon, D. G. Colome, “Fault-Induced Delayed Voltage Recovery Assessment based on Dynamic Voltage Indices,” 2018 IEEE PES Transmission and Distribution Conference and Exhibition-Latin America, pp. 1-5, 2018.
[10] Reza Bekhradian, Mahdi Davarpanah, Majid Sanaye-Pasand, “ Current-based blocking scheme to stabilize distribution network relays against FIDVR,” International Journal of Electrical Power & Energy Systems, vol132, pp.1-2 November 2021.
[11] حسین سبحانی، سعید حسنوند، میثم دوستی زاده، « کنترل ولتاژ شبکه هوشمند به روش سلسله مراتبی و توزیع برخط شده»، مجله مهندسی برق دانشگاه تبریز، جلد50، شماره4، صفحات1614-1613، 1399.
[12] احسان رنجبر، محمد کرم الدینی، مهدی اسدی، « کنترل مستقیم توان‌های اکتیو و راکتیو در نیروگاه بادی مجهز به DFIG با استفاده از کنترل مد لغزشی مقاوم»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره4، صفحات 1440-1441، 1396.
[13]  دکتر پرابها شانکار کندور، «پایداری و کنترل سیستم‌های قدرت»، ترجمه دکتر سیفی، دکتر علی خاکی صدیق، انتشارات دانشگاه تربیت مدرس، 1390.
[14] C. Concordia, S. Ihara, “Load Reperesention in Power System Stability,” IEEE Transaction on Power Systems, vol. PAS-101, pp. 969-977, 1982.
[15] K. Srinivasan, C. T. Nguyen, Y. Robichaud, A. St. Jacques, and G.J. Rogers, “Load Response Coefficients Monitoring System: Theory and Field Experience,” IEEE Transaction on Power Systems, vol. PAS-100, pp. 3818-3827, 1981.
[16] T. Ohyama, A. Watanabe, K. Nishimura, and S. Tsuruta, “Voltage Dependence of Composite Load in Power System,” IEEE Transaction on Power Systems, vol. PAS-104, pp. 3064-3073, 1985.
[17] G. Lammert, D. Premm, L. Pabon Ospina, et al, “Control of  Photovoltaic Systems for Enhanced Short-Term Voltage Stability
and recovery,” IEEE Transaction on Energy Conversion, vol. 34, pp. 1-2, March 2019.
[18] T. VanCustem and C. Vournas, “Voltage Stability of Electric
Power Systems.” Springer, 2008.
[19] هرمان جوزف واگنر، جیوتیرمای ماتور، «آشنایی با نیروگاه برق بادی» ، ترجمه مجید جمیل، پیام صبایی فرد، نشر کتاب آشنا، 1392.
[20] قره‌پتیان، گئورگ، مهدی علوم بیگی، ایمان نیکوفر، محمد مهدی عربشاهی، مرتضی خاتمی، «تولید پراکنده» ، انتشارات دانشگاه صنعتی امیرکبیر، 1397
[21] اکبر ادیب‌فر، نیروگاه بادی، انتشارت پندار پارس، 1394
[22] Wind Turbines-part 27-1 Electrical Simulation Modelds-wind Turbines, IEC Standards 61400-27 ed. 1, 2015.
[23] D. Xie, Z. Xu, L. Yang, J. Østergaard, Y. Xue, and K. P. Wong, “ A Comperhensive LVRT Control Strategy for DFIG Wind Turbines with Enhanced Reactive Power Support,” IEEE Transaction in Power Systems, vol. 28, pp. 3302-3310, August 2013.