Class-C VCO with Bias Regulator Circuitry for Enhanced Oscillation Swing and Robust Start-Up

Document Type : Original Article

Authors

1 M.Sc., Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran,.

2 Assistant Professor, Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

A novel bias regulator circuitry is introduced for the class-C LC-VCO in this paper, that results in reduced phase noise and amplitude-enhanced and more robustness of start-up than conventional class-C VCO. Setting the bias voltage is such that in the start-up, Vbias to be larger than the threshold voltage and provide a safe start-up, then in the steady state oscillation, it goes less than Vth and increases the maximum oscillation amplitude. In the proposed bias circuitry, by combining the ring oscillator circuit and a rectifier and two inverters in the first stage, a step voltage signal is created which changes from 0 to VDD and then by applying it to the second stage and the switching operation of the transistors in this stage, the appropriate Vbias is provided. The proposed VCO is implemented in RF 0.18um CMOS process and is simulated by Cadence. Based on the post layout simulations results, the phase noise of the proposed VCO is -121.3dBc/Hz at 1MHz offset frequency from a 5GHz carrier and the power consumption is 2mW, resulting in a FoM of 192.24dBc/Hz.

Keywords


[1]. Razavi, RF Microelectronics, Prentice Hall New Jersey, 2nd Edition, 2012.
[2]. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, 1998.
[3]. Wu, U. K. Moon and K. Mayaram, “Dependence of LC VCO oscillation frequency on bias current,” IEEE International Symposium on Circuits and Systems, vol. 20, no. 4, pp. 21–24, 2006.
[4]. Soltanian and P. R. Kinget, “Tail Current-Shaping to Improve Phase Noise in LC Voltage- Controlled Oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, 2006.
[5]. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716–2729, 2008.
[6]. Jafari and S. Sheikhaei, “Low phase noise LC VCO with sinusoidal tail current shaping using cascade current source,” AEU-International J. Electron. Commun, vol. 83, pp. 114–122, 2018.
[7]. Aghabagheri, H. Miar-Naimi and M. Javadi, “A Phase Noise Reduction Technique In Lc Cross-Coupled Oscillators With Adjusting Transistors Operating Regions,” International Journal of Engineering, vol. 33, no. 4, pp. 560–566, 2020.
[8]. Mansour, A. Zekry, M. K. Ali and b. Shawkey, “A comparative study between Class-C and Class-B quadrature voltage-controlled power oscillator for multi-standard applications,” Microelectronics Journal Elsevier, vol. 98, no. 14, pp. 1-6, 2020.
[9]. Fanori and P. Andreani, “Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs,” IEEE J. Solid-State-Circuits, vol. 48, no. 7, pp. 1730–1740, 2013.
[10]. Song, B. Kim and S. Nam, “An adaptively biased Class-C VCO with a self-turn-off auxiliary Class-B pair for fast and robust startup,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 34–36, 2016.
[11]. L. Jang and J. J. Wang, “Low-phase noise Class-C VCO with dynamic body bias,” Electronics Letters, vol. 53, no. 9, pp. 847–849, 2017.
[12]. Den, K. Okada, and A. Matsuzawa, “Class-C VCO with amplitude feedback loop for robust start-up and enhanced oscillation swing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 429–440, 2013.
[13]. Zhu, L. Liang and Y. Yang, “A startup robust feedback Class-C VCO with constant amplitude control in 0.18 m CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 541–543, 2015.
[14]. Tohidian, A. Fotowat-Ahmadi, M. Kamarei, and F. Ndagijimana, “High-swing class-C VCO,” in Proc. ESSCIRC, pp. 495–498, 2011.
[15]. R. AhmadiMehr, M. Tohidian and R. B. Staszewski, “Analysis and Design of a Multi-Core Oscillator for Ultra-Low Phase Noise,” IEEE Trans. Circuits Syst. I, vol. 53, no. 8, pp. 1-11, Jan. 2016.
[16] Lee , G. Kim , G. Ko, K. Oh, J. Park and D. Baek, “Low phase noise and wide-range Class-C VCO using auto-adaptive bias technique,” MDPI Electronics, no. 8, 2020.
[17]. عباس نصری و مصطفی یارقلی، «طراحی VCO کلاس C با استفاده از سه‌برابر کننده برای دستیابی به فرکانس GHz8/17- GHz19/19»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 4، صفحه 1842-1852، 1397.
[18]. آرزو عطایی‌فرد، خلیل منفردی و شهرام حسین‌زاده، «طراحی و شبیه‌سازی نوسان‌ساز کنترل شده با ولتاژ کلاس C با تنظیم دیجیتالی با نویز فاز بهبود یافته»، جلد 48، شماره 2، صفحه 816-823، 1397.