Reconfigurable Planar Metasurface Lens using TiO2: Design and Simulation

Document Type : Original Article

Authors

Faculty of electrical and computer engineering, University of Zanjan, Zanjan, Iran.

Abstract

A reconfigurable plasmonic metasurface lens using TiO2 thin film is designed and simulated. Such a planar lens consists of an array with gold nano-antennas mounted on an uniaxial anisotropic substrate. The element of this array is a class of V-shaped nano-antenna with two freedom degrees for extracting phase diagram needed for plasmonic lens design. Two different parameters of this element are the length V arms and its angle. The used Titanium dioxide (TiO2) as a substrate of this metasurface leads to adding another freedom degree into the unit cell due to its anisotropy property at optical regime. Such a unit cell is analyzed using Method of Moments (MoM) in which its dyadic Green's function is evaluated by means of the Equivalent Transmission Line Model (ETLM). Using MoM/ETLM, the cross-polar phase diagram of unit cell is extracted once the optical axis of anisotropic thin film is aligned in x-direction. Then, the elements' dimensions of the lens's array is selected by means of the obtained phase diagram and the equal optical length principle to fulfill the required phase discontinuities of each cell and produce double focus points. Finally, the entire of structure is simulated using a Finite Element Method (FEM) based simulator. It is numerically shown that a double focus planar lens is achieved once lens surface is illuminated by a plane wave and the intensity of lens focuses can be controlled by rotation of TiO2 optic axis. Such a controllable behavior can also be achieved by changing the incident polarization.        

Keywords


[1] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths  based on plasmonic metasurfaces,” Nano Letters, vol. 12, pp. 4932-4936, 2012.
[2] M. Veysi, et al., "Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation," J. Opt. Soc. Am. B, vol. 32, pp. 318-323, 2015.
[3] N. Yu, and F. Capasso, "Optical metasurfaces and prospect of their applications including fiber optics," IEEE/OSA J. Lightwave Technol., vol. 33, pp. 2344-2358, 2015.
[4] Y. Jia, "Focal shift in metasurface based lens," Physics, Optic Express, vol. 26, no. 7, pp. 8001-8015, 2018.
[5] M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, D. P. Tsai, “Principles, functions and applications of optical metalens,” Adv. Opt. meter., vol. 9, no. 4, pp. 2001414 (1-23), 2021.
[6] X. Xiong, et al., "High focusing efficiency terahertz lens based on Huygens metasurface," Physics, Journal of Nanophotonics, Apr. 2021. DoI: 10.1117/1.JNP.15.026011.
[7] K. S. Nielsen, M. Carlsen, S. Reza, "Non-imaging metasurface design for collimated beam shaping," Physics, 2022.
[8] B. Rezaee Rezvan, M. Yazdi, S. E. Hosseininejad, "A 2-bit programmable metasurface for dynamic beam steering applications," Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 2, Summer 2021.
[9] M. Rafaei-Booket, M. Bozorgi, "Dyadic Green's function of plasmonic nano-antenna gratings on natural/artificial anisotropic thin films", Journal of Applied Physics, vol. 129, no. 22, pp. 223105, 2021.
[10] S. Park, G. Lee, B. Park, Y. Seo, C. B. Park, Y. T. Chun, C. Joo, J. Rho, J. M. Kim, J. Hone, S. C. Jun, “Electrically focus-tunable ultrathin lens for high resolution square subpixels,” light: Science & application, vol. 9, no. 98, pp. 1-13, 2020.
[11] Y. Song, W. Liu, X. Wang, F. Wang, A. Wei, H. Meng, N. Meng, N. Lin, H. Zhang, “Multifunctional metasurfaces lens with tunable focus based on phase transition material,” Front. Phys., vol. 9, 651898(1-11), 2021.
[12] M. Bozorgi, Z. Atlasbaf, "Spectral soulution for scattering analysis of periodic plasmonic nano-antennas on iso/anisotropic substrate", IEEE/OSA J. Lightwave Technol., vol. 34, no. 11, pp. 2624-2630, Jun. 2016.
[13] M. Rafaei-Booket, M. Bozorgi, “Low-cost inhomogeneous material for low-RCS reflectarray antenna implementation”, AEU-International Journal of Electronics and Communications, vol. 149, pp. 154182, May 2022.
[14] L.-X. Wu, et al., "Circular-polarization-selective metasurface and its applications to Transmit-Reflect-Array antenna and bidirectional antenna," IEEE Transactions on Antennas and Propagation, 2022. Dol: 10.1109/TAP.2022.3191213.
[15] J. Lin, and S. Wu, X. Li, C. Huange, X. Luo, "Design and numerical analysis of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna array", Applied Physics Express, vol. 6, no. 2, pp. 022004(1-3), 2013.
[16] Handbook of Optical Constants of Solids, E. D. Palik, Academic press, New York, 1991.
[17] T. Itoh, "Spectral doamin immitance approach for dispersion characteristics of generalized printed transmission lines", IEEE Transaction on Microwave Theory and Techniques, vol. 28, no. 27, pp. 733-736, Jul. 1980.
[18] K. scholle, S. Lamrini, P. Koopmann, P. Fuhrberg, Frontiers in guided wave optics and optoelectronics, chapter 21: 2μm laser sources and their possible applications, February 2010.
[19] مهسا علی­جباری، ساغر جارچی، حمیده خصوصی­ثانی و مسعود عدالتی‌پور، "شبیه­سازی و بهینه­سازی نانوآنتن­ها با هم­بندی چندضلعی برای سلول­های خورشیدی"، فصلنامه نانومقیاس، دوره دوم، شماره دوم، صفحات 103-109، تابستان 1394.
[20] محمدرضا اسکندری و سید ایوب میرطاووسی، "ارائه یک نانوساختار پلاسمونیک مبتنی بر نانوآنتن­های تنگستن هشت پره برای بهبود طیف جذب در سیستم­های حرارتی خورشیدی"، فصلنامه نانومقیاس، دوره نهم، شماره 2، صفحات 119-129، تابستان 1401.
[21] V. C. Su, C. H. Cho, G. Sun, D. P. Tsai, “Advances in optical metasurfaces: fabrication and applications,” Opt. Express, vol. 26, no. 10, pp. 13148-13182, 2018.
[22] Y.-Y. Chou, Y.-C. Lee, "A numerical analyses of planar plasmonic focusing lens," Optics Communication, vol. 410, pp. 585-590, Mar. 2018.