A Step-up Seven-Level Switched-Capacitor Inverter with Components Count Reduction for Grid-tied PV Systems Application

Document Type : Original Article

Authors

Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

This paper proposes a seven-level grid-tied Photovoltaic (PV) inverter based on the switched-capacitor technique with input voltage boosting capability. This topology includes an electrolytic capacitor, eight power switches, and two input dc sources. The output peak magnitude of the proposed inverter is one-half times the input voltage sources. The components count of the proposed inverter is reduced in comparison to recent several-level inverters which are used for grid-tied PV applications. This topology does not require an independent control method for balancing voltage of capacitor and has a self-balancing mechanism for the capacitor voltage. Morover, the Model Predictive Control (MPC) is utilized as current injection technique to produce proper output voltage levels. A capacitor optimal design for resistive load and inductive-resistive load has been analyzed to reduce of volume and size of the proposed inverter.  The theoretical loss calculation of the proposed inverter under different load conditions has been analyzed. The performance of the proposed inverter is simulated by MATLAB/Simulink software and the results are presented under on-grid and off-grid conditions. Finally, a 200W laboratory prototype with 180V maximum output voltage is tested to validate the simulation and the theoretical analysis.

Keywords


 
[1] J. F. Ardashir, B. Rozmeh, M. Gasemi, A. M. Shotorbani and A. A. Ghavifekr, "A Novel Boost Fifteen-Level Asymmetrical Flying-Capacitor Inverter with Natural Balancing of Capacitor Voltages", 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021, pp. 1-5, doi: 10.1109/PEDSTC52094.2021.9405887.
[2] J. F. Ardashir, H. V. Ghadim and A. M. Ogly, "A Novel Step-up Common Ground Five-Level Inverter with Inherent Balance of Capacitors Voltage", 2022 IEEE Kansas Power and Energy Conference (KPEC), 2022, pp. 1-5, doi: 10.1109/KPEC54747.2022.9814729.
[3] Hadi Vatankhah Ghadim, Jaber Fallah Ardashir, "Technical design and environmental analysis of 100-kWp on-grid photovoltaic power plant in north-western Iran", Clean Energy, vol. 6, no. 2, pp. 362-371, 2022, https://doi.org/10.1093/ce/zkac013.
[4] Fallah Ardeshir, J., Ajami, A., Jalilvand, A., Mohammadpour, "Flexible Power Electronic Transformer for Power Flow Control Applications", Journal of Operation and Automation in Power Engineering," vol. 1, no. 2, pp. 147-155, 2007.
 [5] P. S. V. Kishore, N. Jayaram, S. Jakkula, Y. R. Sankar, J. Rajesh and S. Halder, "A New Reduced Switch Seven-Level Triple Boost Switched Capacitor Based Inverter", in IEEE Access, vol. 10, pp. 73931-73944, 2022, doi: 10.1109/ACCESS.2022.3190546.
[6] R. Anjali Krishna, L. Padma Suresh, "A brief review on multi level inverter topologies", in 2016 international conference on circuit, power and computing technologies (ICCPCT), 2016, IEEE.
[7] Hosseinpour, M., et al., "Switch count reduced structure for symmetric bi-directional multilevel inverter based on switch-diode-source cells", IET Power Electronics, vol. 13, no. 8, pp. 1675-1686, 2020.
[8] S. Islam, M. D. Siddique, A. Iqbal, S. Mekhilef and M. Al-Hitmi, "A Switched Capacitor-Based 13-Level Inverter with Reduced Switch Count", in IEEE Transactions on Industry Applications, 2022, doi: 10.1109/TIA.2022.3191302.
[9] T. Roy, M. W. Tesfay, B. Nayak, C. K. Panigrahi, "A 7-Level Switched Capacitor Multilevel Inverter With Reduced Switches and Voltage Stresses", in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 12, pp. 3587-3591, 2021.
[10] J. F. Ardashir, M. Sabahi, S. H. Hosseini, F. Blaabjerg, E. Babaei, G. B. Gharehpetian, "A Single-Phase Transformerless Inverter With Charge Pump Circuit Concept for Grid-Tied PV Applications", in IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5403-5415, July 2017, doi: 10.1109/TIE.2016.2645162.
[11] Kazimierczuk MK, "Pulse-width modulated DC-DC power converters", John Wiley & Sons, 2015 Aug 24.
[12] A. Taghvaie, J. Adabi, M. Rezanejad, "A Self-Balanced Step-Up Multilevel Inverter Based on Switched-Capacitor Structure", in IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 199-209, 2018.
[13] A. K. Sadigh, V. Dargahi, K. A. Corzine, "Analytical Determination of Conduction and Switching Power Losses in Flying-Capacitor-Based Active Neutral-Point-Clamped Multilevel Converter", in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5473-5494, 2016.
[14] X. Sun, B. Wang, Y. Zhou, W. Wang, H. Du, Z. Lu, "A Single DC Source Cascaded Seven-Level Inverter Integrating Switched-Capacitor Techniques", in IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7184-7194, 2016.
[15] H. Tian, Y. W. Li, "An Active Capacitor Voltage Balancing Method for Seven-Level Hybrid Clamped (7L-HC) Converter in Motor Drives", in IEEE Transactions on Power Electronics, vol. 35, no. 3, pp. 2372-2388, 2020.
[16] W. Sheng, Q. Ge, "A Novel Seven-Level ANPC Converter Topology and Its Commutating Strategies", in IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7496-7509, 2018.
[17] L. He, C. Cheng, "A Bridge Modular Switched-Capacitor-Based Multilevel Inverter With Optimized SPWM Control Method and Enhanced Power-Decoupling Ability", in IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6140-6149, 2018.
[18] C. Feng, J. Liang, V. G. Agelidis, "Modified Phase-Shifted PWM Control for Flying Capacitor Multilevel Converters", in IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 178-185, 2007.
[19] W. Sheng, Q. Ge, "A Novel Seven-Level ANPC Converter Topology and Its Commutating Strategies", in IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7496-7509, 2018.
[20] Y. P. Siwakoti, A. Mahajan, D. J. Rogers, F. Blaabjerg, "A Novel Seven-Level Active Neutral-Point-Clamped Converter With Reduced Active Switching Devices and DC-Link Voltage", in IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10492-10508, 2019.
[21] S. S. Lee, M. Sidorov, N. R. N. Idris, Y. E. Heng, "A Symmetrical Cascaded Compact-Module Multilevel Inverter (CCM-MLI) With Pulsewidth Modulation", in IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4631-4639, 2018.
[22] Y. C. Fong, K. W. E. Cheng, S. R. Raman, "A Modular Concept Development for Resonant Soft-Charging Step-Up Switched-Capacitor Multilevel Inverter for High-Frequency AC Distribution and Applications", in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5975-5985, 2021.
[23] عباس کتابی، شیلا صفایی، «استفاده از مبدل چند سطحی ماژولار با استفاده از روش کنترل پیش‌بین در سیستم‌های فتوولتاییک متصل به شبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 4، صفحات 1730-1719، زمستان 97.
[24] محمد مرشدلو، رضا قاضی، «کاهش جریان نشتی در اینورتر فتوولتائیک بدون ترانسفورماتور سه‌فاز با استفاده از روش کنترل پیش‌بین مبتنی بر مدل تک‌برداری و دوبرداری توأم با کمینه‌کردن THD و فرکانس کلیدزنی»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 4، صفحات 1832-1819، زمستان 99.
[25] J. F. Ardashir, M. Gasemi, S. Peyghami, B. Rozmeh, F. Blaabjerg, "A Novel Five-Level Transformer-less Inverter Topology with Common-Ground for Grid-Tied PV Applications", 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe), 2021, pp. 1-10, doi: 10.23919/EPE21ECCEEurope50061.2021.9570654.