[1] نجمه شهیدی راد، مهدی نیرومند, و رحمتالله هوشمند، «محاسبه نرخ خرابی و ارزیابی قابلیت اطمینان سیستم فتوولتائیک به روش مونت کارلو با درنظرگرفتن شرایط آب و هوایی»، مجله مهندسی برق دانشگاه تبریز، دوره 44، شماره 3، پاییز 1397.
[2] IEA, Harnessing Variable Renewables- a guide to the balancing chalange. 2011.
[3] پری فضلعلیپور، بهنام محمدی ایواتلو و مهدی احسان، «استراتژی پیشنهاددهی ریزشبکهها در بازارهای انرژی و رزرو روز بعد با در نظر گرفتن عدمقطعیت در تولید و مصرف بار الکتریکی» مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 3، سال 1398.
[4] E. Hillberg et al., “Flexibility needs in the future power system,” Int. Smart Grid Action Netw., 2019.
[5] O. M. Babatunde, J. L. Munda, and Y. Hamam, “Power system flexibility: A review,” 2020.
[6] J. Zhao, T. Zheng, and E. Litvinov, “A unified framework for defining and measuring flexibility in power system,” IEEE Trans. Power Syst., 2016.
[7] M. Poncela, A. Purvins, and S. Chondrogiannis, “Pan-European analysis on power system flexibility,” Energies, 2018.
[8] X. Jin, Q. Wu, and H. Jia, “Local flexibility markets: Literature review on concepts, models and clearing methods,” Applied Energy. 2020.
[9] G. Strbac et al., “Cost-effective decarbonization in a decentralized market: The benefits of using flexible technologies and resources,” IEEE Power Energy Mag., 2019.
[10] B. Kroposki et al., “Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy,” IEEE Power Energy Mag., 2017.
[11] I. Bouloumpasis, D. Steen, and L. A. Tuan, “Congestion Management using Local Flexibility Markets: Recent Development and Challenges,” 2019.
[12] N. Stringer et al., “Consumer-Led Transition: Australia’s World-Leading Distributed Energy Resource Integration Efforts,” IEEE Power Energy Mag., 2020.
[13] T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Designing decentralized markets for distribution system flexibility,” IEEE Trans. Power Syst., 2019.
[14] C. ZHANG, Y. DING, N. C. NORDENTOFT, P. PINSON, and J. ØSTERGAARD, “FLECH: A Danish market solution for DSO congestion management through DER flexibility services,” J. Mod. Power Syst. Clean Energy, 2014.
[15] A. Esmat, J. Usaola, and M. Á. Moreno, “Distribution-level flexibility market for congestion management,” Energies, 2018.
[16] P. Olivella-Rosell et al., “Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources,” 2018.
[17] D. T. Nguyen, M. Negnevitsky, and M. De Groot, “Pool-based demand response exchange-concept and modeling,” IEEE Trans. Power Syst., 2011.
[18] M. Pavlovic, T. Gawron-Deutsch, C. Neureiter, and K. Diwold, “SGAM business layer for a local flexibility market,” 2016.
[19] A. Esmat, J. Usaola, and M. Á. Moreno, “A decentralized local flexibility market considering the uncertainty of demand,” Energies, 2018.
[20] S. S. Torbaghan, N. Blaauwbroek, P. Nguyen, and M. Gibescu, “Local market framework for exploiting flexibility from the end users,” 2016.
[21] I. Bouloumpasis, N. Mirzaei Alavijeh, D. Steen, and A. T. Le, “Local flexibility market framework for grid support services to distribution networks,” Electr. Eng., 2021.
[22] P. Olivella-Rosell et al., “Local flexibility market design for aggregators providing multiple flexibility services at distribution network level,” Energies, 2018.
[23] S. S. Torbaghan et al., “A market-based framework for demand side flexibility scheduling and dispatching,” Sustainable Energy, Grids and Networks. 2018.
[24] M. Diekerhof, F. Peterssen, and A. Monti, “Hierarchical distributed robust optimization for demand response services,” IEEE Trans. Smart Grid, 2018.
[25] F. Retorta, J. Aguiar, I. Rezende, J. Villar, and B. Silva, “Local market for TSO and DSO reactive power provision using DSO grid resources,” Energies, 2020.
[26] M. Pantoš, “Market-based congestion management in electric power systems with exploitation of aggregators,” Int. J. Electr. Power Energy Syst., 2020.
[27] محمد پناه آذری، «طراحی بازار ذخیره عملیاتی در شبکه توزیع با در نظر گرفتن محدودیتهای فنی شبکه»، دانشگاه تربیت مدرس، 1399.
[28] T. Schittekatte and L. Meeus, “Flexibility markets: Q&A with project pioneers,” Util. Policy, 2020.
[29] S. Gumpu, B. Pamulaparthy, and A. Sharma, “Review of Congestion Management Methods from Conventional to Smart Grid Scenario,” International Journal of Emerging Electric Power Systems. 2019.
[30] M. M. Gajjala and A. Ahmad, “A survey on recent advances in transmission congestion management,” Int. Rev. Appl. Sci. Eng., 2021.
[31] A. G. Givisiez, K. Petrou, and L. F. Ochoa, “A Review on TSO-DSO Coordination Models and Solution Techniques,” Electr. Power Syst. Res., 2020.
[32] J. Bellenbaum, J. Höckner, and C. Weber, “Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions,” Energy Econ., 2022.
[33] M. Attar, S. Repo, and P. Mann, “Congestion management market design- Approach for the Nordics and Central Europe,” Appl. Energy, 2022.
[34] O. Okur, R. Brouwer, P. Bots, and F. Troost, “Aggregated Flexibility to Support Congestion Management,” 2018.
[35] Z. Ghofrani-Jahromi, Z. Mahmoodzadeh, and M. Ehsan, “Distribution loss allocation for radial systems including dgs,” IEEE Trans. Power Deliv., 2014.
[36] X. Bai, Q. Sun, L. Liu, F. Liu, X. Ji, and J. Hardy, “Multi-objective planning for electric vehicle charging stations considering TOU price,” 2017.
[37] M. Tsurumi, T. Tanino, and M. Inuiguchi, “Shapley function on a class of cooperative fuzzy games,” Eur. J. Oper. Res., 2001.
[38] H. M. Soliman and A. Leon-Garcia, “Game-theoretic demand-side management with storage devices for the future smart grid,” IEEE Trans. Smart Grid, 2014.
[39] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, “Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems,” Comput. Struct., 2012.
[40] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, “Water cycle algorithm for solving multi-objective optimization problems,” Soft Comput., 2015.
[41] M. Nasir, A. Sadollah, Y. H. Choi, and J. H. Kim, “A comprehensive review on water cycle algorithm and its applications,” Neural Computing and Applications. 2020.
[42] M. R. Narimani, A. A. Vahed, R. Azizipanah-Abarghooee, and M. Javidsharifi, “Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost,” IET Gener. Transm. Distrib., 2014.
[43] P. Nallagownden, K. Mahesh, and I. Elamvazuthi, “A combined-model for uncertain load and optimal configuration of distributed generation in power distribution system,” Int. J. Simul. Syst. Sci. Technol., 2017.