[1] C. Belwal, S. Rai, and A. Gupta, "A new graph-based extractive text summarization using keywords or topic modeling," Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 10, pp. 8975–8990, 2021, doi: 10.1007/s12652-020-02591-x.
[2] Li, J. Zhu, J. Zhang, C. Zong, and X. He, "Keywords-Guided Abstractive Sentence Summarization," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 8196–8203, Apr. 2020, doi: 10.1609/aaai.v34i05.6333.
[3] Wong, J. Thangarajah, and L. Padgham, "Contextual question answering for the health domain," Journal of the American Society for Information Science and Technology, vol. 63, no. 11, pp. 2313–2327, 2012, doi: 10.1002/asi.22733.
[4] Willis, G. Davis, S. Ruan, L. Manoharan, J. Landay, and E. Brunskill, "Key Phrase Extraction for Generating Educational Question-Answer Pairs," in Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale, 2019, pp. 1–10, doi: 10.1145/3330430.3333636.
[5] Chaudhuri, N. Sinhababu, M. Sarma, and D. Samanta, "Hidden features identification for designing an efficient research article recommendation system," International Journal on Digital Libraries, vol. 22, no. 2, pp. 233–249, 2021, doi: 10.1007/s00799-021-00301-2.
[6] Riaz, M. Fatima, M. Kamran, and M. W. Nisar, "Opinion mining on large scale data using sentiment analysis and k-means clustering," Cluster Computing, vol. 22, no. S3, pp. 7149–7164, May 2019, doi: 10.1007/s10586-017-1077-z.
[7] Rahardja, T. Hariguna, and W. M. Baihaqi, "Opinion Mining on E-Commerce Data Using Sentiment Analysis and K-Medoid Clustering," in 2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media), 2019, pp. 168–170, doi: 10.1109/Ubi-Media.2019.00040.
[8] Cano and O. Bojar, "Keyphrase Generation: A Multi-Aspect Survey," in 2019 25th Conference of Open Innovations Association (FRUCT), 2019, vol. 5, pp. 85–94, doi: 10.23919/FRUCT48121.2019.8981519.
[9] Siddiqi, "Keyword and Keyphrase Extraction Techniques : A Literature Review," International Journal of Computer Applications, vol. 109, no. 2, pp. 18–23, 2015, doi: 10.5120/19161-0607.
[10] Papagiannopoulou and G. Tsoumakas, "A review of keyphrase extraction," WIREs Data Mining and Knowledge Discovery, vol. 10, no. 2, pp. 1–59, Mar. 2020, doi: 10.1002/widm.1339.
[11] Doostmohammadi, M. H. Bokaei, and H. Sameti, "PerKey: A Persian News Corpus for Keyphrase Extraction and Generation," in 2018 9th International Symposium on Telecommunications (IST), 2018, pp. 460–465, doi: 10.1109/ISTEL.2018.8661095.
[12] Mohseni and H. Faili, "Title Generation and Keyphrase Extraction from Persian Scientific Texts," in 2020 25th International Computer Conference, Computer Society of Iran (CSICC), 2020, pp. 1–6, doi: 10.1109/CSICC49403.2020.9050113.
[13] H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-Manning, "KEA: practical automatic keyphrase extraction" in Proceedings of the fourth ACM conference on Digital libraries - DL ’99, 1999, pp. 254–255, doi: 10.1145/313238.313437.
[14] D. Turney, "Learning algorithms for keyphrase extraction," Information Retrieval, vol. 2, no. 4, pp. 303–336, 2000, doi: 10.1023/A:1009976227802.
[15] D. Turney, "Learning to Extract Keyphrases from Text," Dec. 1999.
[16] R. El-Beltagy and A. Rafea, "KP-Miner: A keyphrase extraction system for English and Arabic documents," Information Systems, vol. 34, no. 1, pp. 132–144, 2009, doi: 10.1016/j.is.2008.05.002.
[17] Campos, V. Mangaravite, A. Pasquali, A. M. Jorge, C. Nunes, and A. Jatowt, "YAKE! Collection-Independent Automatic Keyword Extractor," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10772 LNCS, pp. 806–810, 2018.
[18] Ding, and X. Luo, "AttentionRank: Unsupervised Keyphrase Extraction using Self and Cross Attentions." In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 1919-1928, 2021.
[19] Wan and J. Xiao, "CollabRank: Towards a collaborative approach to single-document keyphrase extraction," Coling 2008 - 22nd International Conference on Computational Linguistics, Proceedings of the Conference, vol. 1, no. August, pp. 969–976, 2008.
[20] Mihalcea and P. Tarau, "TextRank: Bringing order into texts," in Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, EMNLP 2004 - A meeting of SIGDAT, a Special Interest Group of the ACL held in conjunction with ACL 2004, 2004, vol. 85, pp. 404–411.
[21] Bougouin, F. Boudin, and B. Daille, "TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction," in 6th International Joint Conference on Natural Language Processing, IJCNLP 2013 - Proceedings of the Main Conference, 2013, pp. 543–551.
[22] Boudin, "Unsupervised Keyphrase Extraction with Multipartite Graphs," in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018, vol. 2, pp. 667–672, doi: 10.18653/v1/N18-2105.
[23] Çano and O. Bojar, "Two Huge Title and Keyword Generation Corpora of Research Articles," in LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings, 2020, pp. 6663–6671.
[24] Sharifi and M. A. Mahdavi, "Supervised approach for keyword extraction from Persian documents using lexical chains," Signal and Data Processing, vol. 15, no. 4, pp. 95–110, Mar. 2019, doi: 10.29252/jsdp.15.4.95.
[25] امید حاجی پور، سعیده سادات سدیدپور، «استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از »، پدافند الکترونیکی و سایبری، جلد 8، شماره 2، صفحات 105-114.
[26] Mehrabi, A. Mohebi, and A. Ahmadi, "Improved keyword extraction for persian academic texts using RAKE algorithm; case study: Persian theses and dissertations," Iranian Journal of Information Processing and Management, vol. 37, no. 1, pp. 197–228, 2021, doi: 10.52547/jipm.37.1.197.
[27] Rose, D. Engel, N. Cramer, and W. Cowley, "Automatic Keyword Extraction from Individual Documents," in Text Mining, Chichester, UK: John Wiley & Sons, Ltd, 2010, pp. 1–20.
[28] Lazemi, H. Ebrahimpour-Komleh, and N. Noroozi, "PAKE: a supervised approach for Persian automatic keyword extraction using statistical features," SN Applied Sciences, vol. 1, no. 12, pp. 1–4, 2019, doi: 10.1007/s42452-019-1627-5.
[29] Veisi, N. Aflaki, and P. Parsafard, "Variance-based features for keyword extraction in Persian and English text documents," Scientia Iranica, vol. 27, no. 3 D, pp. 1301–1315, 2020, doi: 10.24200/SCI.2019.50426.1685.
[30] Hejazi and J. A. Nasiri, "Keywords Extraction from Persian Thesis Using Statistical Features and Bayesian Classification," Language Related Research, vol. 12, no. 6, pp. 339–367, 2022, doi: 10.52547/LRR.12.6.11.
[31] مریم باسره، ولی درهمی، سجاد ظریفزاده. «ارائه روشی برای استخراج خودکار عبارات کلیدی از اخبار وب پارسی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 857-866، 1396.
[32] سعید دهقانی اشکذری، ولی درهمی، علیمحمد زارع بیدکی، محمداحسان بصیری،. «عقیدهکاوی در زبان فارسی مبتنی بر یادگیری انتقالی»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 3، صفحات 1215-1224، 1399.
[33] Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A. and Raffel, C. "mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer," in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 483–498, doi: 10.18653/v1/2021.naacl-main.41.
[34] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P.J., "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer," Journal of Machine Learning Research, vol. 21, pp. 1–67, Oct. 2019.
[35] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., "Attention Is All You Need," Advances in neural information processing systems, vol. 8, no. 1, pp. 8–15, Jun. 2017.
[36] Rosset, "Turing-NLG: A 17-billion-parameter language model by Microsoft," Microsoft Blog, 2020. [Online]. Availabl https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.
[37] Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N. and Presser, S., "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," Dec. 2020.
[38] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. and Agarwal, S.,, "Language models are few-shot learners," Advances in Neural Information Processing Systems, vol. 2020-Decem, no. NeurIPS, 2020.
[39] Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P. and Chi, Y., 2017. Deep keyphrase generation. arXiv preprint arXiv:1704.06879.